Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Реферат на тему «Реагенты для дорог: как повысить коэффициент сцепления»

По данным сайта Госавтоинспекции количество автомобилей, зарегистрированных в органах ГИБДД России, на начало 2016 года составило 56,6 млн. В среднем каждый год эта цифра возрастает на 1,5 млн единиц. А значит, дорожная ситуация становится все более и более напряженной.

Написание реферата за 4 часа

Оглавление

Введение

Глава 1. Факторы, влияющие на сцепные качества покрытий автомобильных дорог

Глава 2. Какие противогололедные материалы позволяют достичь необходимого коэффициента сцепления колес с дорогой?

Глава 3. Фрикционные материалы как средство повышения коэффициента сцепления колес с дорогой.

Заключение

Список использованной литературы

Введение

По данным ГИБДД, более половины ДТП происходят из-за неудовлетворительных дорожных условий (НДУ). Зимой это, как правило, наличие гололеда, снежного наката. В январе-феврале 2016 года комитет по благоустройству Санкт-Петербурга принял решение убирать улицы без использования химических средств, только механическим и фрикционным способом (использование песко-соляной смеси с содержанием соли 5%). Согласно официальным данным УГИБДД по Ленинградской области и Санкт-Петербургу за январь и февраль 2016 года число ДТП из-за НДУ выросло на 75,1% по сравнению с аналогичным периодом прошлого года, количество погибших в этих авариях увеличилось на 61,5%, раненых — на 76,4%. Рост числа ДТП зафиксирован и на пешеходных переходах.

По данным МВД РФ число аварий из-за гололеда на дорогах Санкт-Петербурга зимой 2015 года выросло в 3 раза по сравнению с 2014 годом. А в январе и феврале 2016 по причине неудовлетворительных условий на дорогах произошло в два раза больше ДТП, чем за всю зиму 2015 года (см. Таблицу).

Таблица Количество аварий, произошедших в связи с гололедицей, в городе Санкт-Петербурге по данным МВД РФ

  2014 2015 Янв-фев 2016
ДТП из-за гололедицы 50 154 317
Погибло 0 3 21
Ранено 67 184 397

Данная ситуация объясняется тем, что механический и фрикционный способ являются неэффективными для борьбы с гололедом.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

Во-первых, молекулярные связи льда с покрытием являются более сильными, чем молекул льда между собой, поэтому при механическом воздействии часть льда отделяется, но слой, связанный с покрытием, остается.

Во-вторых, из-за перепадов температур на дороге происходит образование очень тонкого в 2-3 мм слоя льда, который невозможно убрать механическим способом. Фрикционные материалы являются инертными веществами, которые не вступают в реакцию со льдом и не плавят их, а значит, не обеспечивают нормативного сцепления колес с дорогой.

В этой связи необходимы химические реагенты для дорог, которые обеспечат плавление снежно-ледовых отложений и как следствие, надежное сцепление колес автомобильных средств с покрытием.

Цель данного реферата: выяснить, какие противогололедные реагенты необходимо применять, чтобы коэффициент сцепления колес с дорогой достигал установленной в Российской Федерации нормы (согласно ГОСТу 50597-93 коэффициент должен быть не менее 0,3).

Задачи:

  • установить факторы, влияющие на сцепные качества покрытий автомобильных дорог;
  • выявить противогололедные материалы, которые целесообразно использовать для борьбы со льдом на автодорогах.

Данный реферат состоит из введения, основной части (включающей в себя три главы), заключения и списка использованной литературы.

Глава 1. Факторы, влияющие на сцепные качества покрытий автомобильных дорог

Значительное влияние на безопасность движения транспортных средств оказывают сцепные качества покрытий автомобильных дорог. На коэффициент сцепления влияют, в свою очередь, такие показатели, как ровность и шероховатость дорожного покрытия.

Коэффициент сцепления φ представляет собой отношение максимально возможного на данном участке дороги значения силы сцепления между шинами транспортного средства и поверхностью дороги Рсц к весу этого транспортного средства Ga:

Величина эта главным образом зависит от покрытия и состояния дороги, а также от скорости движения.

Также существенное влияние на величину коэффициента сцепления оказывают: состояние протекторов шин, давление в шинах, температура окружающей среды и ряд других неподдающихся учету факторов.

Кроме того, к факторам, изменяющим коэффициент сцепления, относятся:

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

  • неровности дороги (увеличивают частоту вертикальной нагрузки — φ снижается);
  • пропитка вяжущими материалами поверхности дорог (избыток вяжущих материалов делает поверхность скользкой, в жаркую погоду вяжущий материал размягчается, выступает на поверхность дороги, при этом φ уменьшается);
  • увлажнение покрытия (в начале дождя φ уменьшается из-за того, что влага, дорожная пыль, частицы резины, капли нефтепродуктов образуют жидкую грязь, по которой скользят колеса);
  • продолжительность эксплуатации дорожного покрытия (при увеличении срока эксплуатации покрытия φ уменьшается из-за уменьшения шероховатости);
  • замасливание поверхности дороги (замасливание дороги нефтепродуктами резко снижает φ);
  • увеличение нагрузки на колесо (на твердых покрытиях дорог при увеличении нагрузки φ снижается).

Итак, определяющим для коэффициента сцепления фактором является состояние дорожного покрытия. А на него в зимний период влияет то, какие именно реагенты для дорог используются для борьбы с наледью и накатом. Этот вопрос будет рассмотрен подробнее в следующей главе.

Глава 2. Какие противогололедные материалы позволяют достичь необходимого коэффициента сцепления колес с дорогой?

противогололедный сцепление колесо дорога

Коэффициент сцепления колес автотранспортных средств с дорожным покрытием должен соответствовать требованиями ГОСТ Р 50597-93 — необходимо, чтобы значение коэффициента составляло не менее 0,3. Государственный стандарт Российской Федерации “Автомобильные дороги и улицы. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения» введен в действие Постановлением Госстандарта России № 221 от 11.10.1993 г. Также с 1 сентября 2016 года вступает в силу межгосударственный ГОСТ 33181-2014 “Дороги автомобильные общего пользования. Требования к уровню зимнего содержания”, согласно которому на дорогах с интенсивностью движения выше 1500 автомобилей в сутки не должно быть наледи, снежно-ледовых отложений и наката, а снег допускается толщиной лишь в пару сантиметров и только во время снегопада. После осадков он должен быть убран максимум за 6 часов.

Исторически сложилось, что в России наиболее распространенным противогололедным материалом является пескосоляная смесь. Это произошло из-за неразвитости химической индустрии, которая до 2000-х годов не могла предложить дорожным службам более современных средств для борьбы с гололедом, чем техническая соль и песок. В остальных странах песок из-за его неэффективности и высоких издержек по распределению и удалению, а также из-за колоссального негативного воздействия на качество воздуха и здоровье людей не используется, а где-то законодательно запрещен.

Согласно новому ГОСТ 33181-2014 “Дороги автомобильные общего пользования. Требования к уровню зимнего содержания” требования к состоянию дорожного полотна в зимнее время предъявляются еще более строгие.

Дорожное полотно, как в пределах города, так и на автомобильных трассах, должно быть очищено по всей ширине дороги до асфальта и обработано противогололедными материалами заранее — в случае предупреждения об осадках и гололеде, или в течение двух часов после обнаружения опасных участков дороги.

Таблица 3 Требования к состоянию проезжей части по ГОСТ 33181-2014

Виды снежно-ледяных образований*
  1 2 3 4 5
Наличие уплотненного снега Не допускается
Наличие зимней скользкости Не допускается
Толщина рыхлого снега, в том числе на мостовых сооружениях во время снегопада и снегоочистки, см., не более 1 2 2 3 5
*рыхлый снег : Неуплотненный слой снега, образующийся на проезжей части дороги, обочинах тротуарах во время снегопада и/или метели.

Соответственно, можно сделать следующий вывод — учитывая, что дороги должны быть очищены до “черного асфальта”, применение пескосоляной смеси, которая в целях плавления льда бесполезна (процент содержания соли в ней совсем не большой), является бессмысленным.

На дорогах должны использоваться антигололедные реагенты с высокой плавящей способностью, а также комбинированные — с содержанием и химической, и фрикционной композиции. Такие материалы эффективны для мгновенного улучшения сцепления колес с дорогой в случае уже образовавшегося наката, крутых подъемов и спусков, а также на дорогах, содержащихся под уплотненным снежным покровом (УСП).

Однако при выборе химической составляющей противогололедных реагентов кроме плавящей способности и температуры кристаллизации, следует учитывать еще один немаловажный фактор, который способен повлиять на коэффициент сцепления колес с дорогой — вязкость антигололедного вещества.

Согласно ГОСТ 33389 “Противогололедные материалы. Технические требования” вязкость реагента — показатель качества раствора ПГМ, определяющий возможность равномерного разбрызгивания дорожной техникой. Вязкость напрямую связана со способностью антигололедного материала уменьшать коэффициент сцепления колес с дорожным покрытием. Поэтому к использованию не допускаются жидкие противогололедные материалы с вязкостью более 5 сП, а твердые — более 4 Сп. Однако, подвох заключается в том, что методика измерения вязкости проводится при +20С. В то время как реагенты применяются при отрицательных температурах. Научно доказано, что на морозе свойства веществ могут сильно меняться. Жидкости могут становиться более вязкими (см. Таблицу 4).

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Так в 2000 году в процессе поиска новых реагентов для борьбы с гололедом коммунальные службы на нескольких улицах Москвы использовали растворы чистого хлористого кальция (ХКМ). Данное вещество обладает низкой температурой кристаллизации и хорошей плавящей способностью, но при этом еще и повышенной вязкостью. Раствор хлористого кальция с минерализацией 32% даже при положительных температурах имеет вязкость более 5 сП. Раствор с минерализацией меньше 32% проходит по методике испытаний при температуре в +20С по показателю вязкости, но уже при -5С густеет и превышает 5 сП.

Когда реагент использовали в Москве, он растопил наледь, но массовое ДТП все равно произошло — дорога была покрыта “маслянистой” пленкой, в которую превратился хлористый кальций на холоде. Подобные случаи повторялись в разных городах: во Владивостоке в 2013, когда власти закупили хлористый кальций из Китая с высокой вязкостью, в Санкт-Петербурге в 2015, когда дорожники сами попробовали получить хлористый кальций в растворных узлах из кислоты и известняка. В ходе дальнейших исследований выяснилось, что добавление к хлористому кальцию хлористого натрия резко снижает вязкость и “разбивает” маслянистую пленку. Поэтому использование чистого хлористого кальция было запрещено. Его заменили на многокомпонентный реагент из хлорида кальция с хлоридом натрия (ХКНМ, ХКН-КМ).

Еще одна “масляная” соль, использование которой может привести к авариям на дорогах — бишофит-хлористый магний. Эту соль Древнего моря добывают из-под земли путем закачивания воды в подземные шахты и вымывания солей. В результате получается насыщенный соляной раствор, в котором кроме хлористого магния присутствуют несколько десятков минеральных веществ: брома, бора, стронция, мышьяка и т.д. Такой раствор из-за богатого минерального состава обладает высокими коррозионными свойствами, токсичностью (2 класс опасности) и высокой вязкостью. Согласно отчету лаборатории федерального автономного учреждения “Росдорнии” вязкость жидкого противогололедного реагента “Экотрек”, производства Волгоградского магниевого завода (ВМЗ) составляет 7,31 сП при +20С, что в полтора раза выше допустимого. При понижении температуры, такое вещество еще больше густеет.

Таблица 4 Вязкость некоторых солей противогололедных материалов в зависимости от температуры

  Вязкость, сП
Температура раствора, С NaCl, 23% MaCl2, 26% CaCl2, 26% ХКМ (хлористый кальций модифицированный) Ацетат калия
0 3,15 7,80 4,36 4,44 7,42
-5 3,68 9,56 5,19 5,19 8,6
-10 4,27 11,72 6,06 6,05 8,94
-15 5,51 14,93 7,89 7,72 12,3
-20 6,71 19,32 9,15 8,47 13,72
-25 25,50 11,00 10,50 14,99
-30 16,79

Как видно из таблицы, хлористый магний в чистом виде из-за вязкости использовать на дорогах нельзя. Вязкость хлористого кальция уже при -5С начинает превышать допустимые нормы, а при -15С и -20С, когда данный противогололедный материал в принципе есть смысл использовать из-за его низкой температуры кристаллизации, вязкость превышает предельные цифры в 2 раза!

Поэтому и хлорид магния (бишофит) и хлорид кальция нельзя использовать как противогололедные материалы в чистом виде. Эти вещества могут быть использованы в качестве компонентов в многокомпонентных реагентах.

Глава 3. Фрикционные материалы как средство повышения коэффициента сцепления колес с дорогой

Следует отметить, что в чистом виде фрикционные материалы (щебень, каменную крошку) нельзя использовать при гололеде, а также на чистом асфальтовом покрытии, так как они будут только увеличивать тормозной путь, создавая “роликовый эффект”, а сам щебень будет вылетать из-под колес и повреждать автомобили.

При использовании комбинированных противогололедных материалов, гранулы солей слегка подтапливают лед, и щебень впаивается в него, создавая эффект “наждачной бумаги”.

Какой фрикционный материал наиболее эффективен?

Масштабные исследования, проведенные МАДИ (Московским автомобильно-дорожным государственным техническим университетом), показали, что наиболее эффективным для сцепления колес с дорогой является мраморный щебень фракции 3-7 мм и твердости 400. Более твердые породы способствуют возникновению “роликового” эффекта и эффекта “шрапнели”, а более мягкие материалы колеса автомобилей просто давят.

Согласно исследованиям, существуют большие технологические различия между мраморным и гранитным щебнем, не в пользу последнего.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Гранитный щебень в качестве противогололедного материала использовать не рекомендуется, поскольку:

  • он обладает высокой твердостью, следовательно, выступает как абразивный материал. Под воздействием колес автомобилей гранитный щебень очень быстро истирает дорожное покрытие, способствуя образованию колейности, и ускоряет износ шин, разрушает лакокрасочное покрытие кузова, что ускоряет коррозию металла под воздействием снега. Мраморный же щебень обладает твердостью примерно в 4 раза меньшей, чем гранитный. Соответственно, он не разрушает дороги, а при очень высоких нагрузках сам рассыпается без вреда для участников движения. Именно по этой причине в Стокгольме используют мраморный, а не гранитный щебень;
  • гранитный щебень, попадая на эскалаторы и иные движущиеся части машин и механизмов подземного транспорта, часто выводит их из строя. При переходе с гранитного на мраморный щебень в 2011 году в Москве не было зафиксировано ни одной такой поломки эскалатора;
  • гранитный щебень при использовании на тротуарах и пешеходных зонах загрязняет почву и ухудшает состояние газонов. Гранит распадается несколько тысяч лет, поэтому систематическое попадание гранита приводит к “окаменению” почв. В Швеции, где гранит является широко распространенным материалом в виду его доступности, каждые 5 лет дорожные службы вынуждены заменять газоны до полуметра вглубь. Мрамор под воздействием влаги, ветра и почвенных бактерий разлагается за 2-3 года, при этом удобряя почву и улучшая ее фильтрацию;
  • многие гранитные карьеры обладают повышенным радиационным фоном, мрамор же соответствует нормам радиационной безопасности и не превышает норм для строительства жилых помещений — 370 Бк/кг.

Таким образом, делаем вывод, что для борьбы с гололедом на автодорогах целесообразно использовать современные ПГМ (противогололедные материалы), обладающие высокой плавящей способностью, а также комбинированные — с мраморным щебнем (их следует применять, если нужно убрать скользкость быстро). Необходимо, чтобы реагенты для дорог обеспечивали коэффициент сцепления не менее 0,3.

Заключение

В ходе написания данного реферата определены факторы, влияющие на сцепные качества покрытий автомобильных дорог. Выявлено, что очень большое влияние на коэффициент сцепления в зимний период оказывают реагенты для дорог и их свойства.

Доказано, что пескосоляная смесь не является эффективной при гололеде и обледенелом накате. Она не обеспечивает необходимый согласно ГОСТ Р 50597-93 коэффициент сцепления (не менее 0,3).

Одним из важных технологических показателей, влияющий на коэффициент сцепления колес с дорогой, является вязкость антигололедных реагентов.

Хлористый кальций и хлористый магний (бишофит) даже уже при температуре -5С обладают вязкостью, которая превышает предельно допустимый показатель (5сП для жидких и 4 сП для твердых реагентов). Поэтому данные вещества опасно использовать как самостоятельные противогололедные материалы, так как они могут вызвать дорожно-транспортные происшествия. Эти соли можно использовать лишь в качестве компонентов в составе противогололедных материалов.

Для борьбы с гололедом целесообразно использовать комбинированные антигололедные материалы с мраморным щебнем твердостью 400 и размером 3-7 мм. Гранитный щебень вызывает ускоренный износ дорожного полотна, повреждает лакокрасочное покрытие автомобилей, движущиеся части эскалаторов, вызывает “закаменение” почв на газонах, в следствии которого появляется необходимость в периодической замене грунтов.

Список использованной литературы

1. Евтюков С.А., Васильев Я.В. Дорожно-транспортные происшествия: расследование, реконструкция, экспертиза / под общ. ред. С.А. Евтюкова. — СПб. : ДНК, 2008. — 392 с.

2. Евтюков С.А. Условия и вероятность возникновения ДТП // Мир дорог. — 2010. — № 45 — С. 62-64.

3. Евтюков С.А., Хролов С.А. Оценка влияния геометрических параметров и сцепных качеств автодороги на безопасность дорожного движения. Труды молодых ученых //Интеграция / СПб. гос. архит.-строит. ун-т. — СПб., 2000. — Ч. 2. — С. 98-100.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

4. Евтюков С.А., Медрес Е.П. Проектирование и строительство облегченных насыпей с применением EPS-блоков // Автомобильные дороги. — 2007. — № 10. — С. 73-75.

5. Евтюков С.А. [и др.] Строительство, расчет и проектирование облегченных насыпей. — СПб. : Петрополис, 2009. — 260 с.

6. ГОСТ 33181-2014 Дороги автомобильные общего пользования. Требования к уровню зимнего содержания

7. ГОСТ Р 50597-93 Автомобильные дороги и улицы. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения

8. Сравнительный анализ вязкости противогололедных материалов, Росдорнии, 2011г.

 

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

763

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке