Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Реферат на тему «Уровни организации биологических систем»

Все объекты природы (живой и неживой природы)можно представить в виде системы, обладающими особенностями, характеризующими их уровней организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов.

Написание реферата за 4 часа

Содержание

Введение
1. Молекулярно-генетический уровень
2. Клеточный уровень
3. Организменный уровень
4. Популяционно-видовой уровень
5. Уровень биогеоценозов
6. Биосферный уровень
Заключение
Список использованных источников

Введение

Все объекты природы (живой и неживой природы)можно представить в виде системы, обладающими особенностями, характеризующими их уровней организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции. Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. Диаграмма наиболее точно отражает целостную картину природы и уровень развития естествознания в целом. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х г.г. нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий. Цель данной работы заключается в изучении концепции структурной организации материи.

Современная биологическая картина мира основывается на том, что мир живого – это колоссальная система высокоорганизованных систем. В современной биологии классическими уровнями данной системы, которая определяется как живая материя, являются следующие: молекулярно-генетический, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный уровни.

1. Молекулярно-генетический уровень

Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.

Элементарной единицей на молекулярно-генетическом уровне служит ген — фрагмент молекулы нуклеиновой кислоты, в котором записан определенный в качественном и количественном отношении объем биологической информации. Элементарное явление заключается в процессе ковариантной редупликации или самовоспроизведении с изменениями генов. Путем редупликации ДНК происходит копирование генов и заключенной в них биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.

Генетический код — свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: аденин, гуанин, цитозин, тимин (ДНК), урацил (РНК)

Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

Рибонуклеи́новые кисло́ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.

Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов.

Однозначность — определённый кодон соответствует только одной аминокислоте.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека.

2. Клеточный уровень 

Кле́тка — элементарная единица строения и жизнедеятельности всех живых организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Клетка является структурной и функциональной единицей всех живых организмов на Земле. Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые утилизируются в процессе биосинтеза белков в соответствии с существующей информацией. Таким образом, на клеточном уровне сопрягаются механизмы передачи информации и превращения веществ и энергии. Элементарные явления на этом уровне создают энергетическую и вещественную основу жизни на других уровнях.

3. Организменный уровень

Организменный уровень организации — это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет назвать этот уровень также онтогенетическим. Закономерные изменения организма в индивидуальном развитии составляют элементарные явления. В ходе онтогенеза, в результате реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.  

4. Популяционно-видовой уровень

Популяционно-видовой уровень. Единицей уровня являются особи, объединённые в популяции, которые в свою очередь объединены в виды. Основные признаки уровня: рождаемость, смертность, структура популяции (половая и возрастная), плотность, численность популяции.

Вид – это совокупность сходных между собой по определенному признаку, способных скрещиваться между собой и давать плодовитое потомство.
Популяции –совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних совокупностей того же вида.

Объединение особей в популяцию происходит на основе общности генофонда. Популяция, в силу возможности межпопуляционных скрещиваний, представляет собой открытую генетическую систему. Действие элементарных эволюционных факторов приводит к эволюционно значимым изменениям генофонда популяции, что и принимается за элементарное явление на этом уровне.

Особи одного вида населяют территорию с известными абиотическими показателями (климат, химизм почв, гидрологические условия) и взаимодействуют с организмами других видов. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества — биогеоценозы, которые служат элементарными единицами биогеоценотического уровня. Видовой состав, а также характеристики местообитания для отдельных биогеоценозов обеспечивают вещественно-энергетические круговороты, которые представляют на рассматриваемом уровне элементарные явления. Ведущая роль в этих круговоротах принадлежит живым организмам. Биоценоз — это открытая в вещественном и энергетическом плане система. Благодаря этому биогеоценозы объединяются в единый комплекс — область распространения жизни или биосферу.

Популяционно-видовой. Здесь элементарными структурами являются популяции любого вида живых организмов, а элементарное явление — направленное изменение их генетического состава. Последнее ведет к возникновению приспособлений и в итоге к видообразованию на основе естественного отбора.

Строгий и достаточно точный анализ любых явлений материального мира возможен лишь тогда, когда удается вычленить и описать элементарные структурные единицы и протекающие в них и между ними элементарные явления. Наиболее изученным уровнем эволюции является популяционно-видовой. На этом уровне выделены: элементарная единица эволюции (популяция), элементарный эволюционный материал (мутации), элементарные факторы эволюции (мутационный процесс, поток генов, популяционные волны, изоляция, дрейф генов, гибридизация, естественный отбор), элементарное эволюционное явление (изменение генотипического и фенотипического состава популяции)

Популяция — долгосуществующая группировка особей одного вида, объединенная генофондом, ареалом, панмиксией, эконишей. Популяция есть функциональная единица вида, которая сохраняется как целое, в то время как части ее постоянно замешаются в результате рождения, иммиграции, эмиграции, смерти. Популяция — это биологическая единица. Она входит в состав более сложных систем — биоценозов, экосистем. Популяция выполняет такие функции, как рост, гомеостаз и наиболее полное использование природных ресурсов и территории.

Объединение особей в популяции, а популяций в виды по степени генетического и экологического единства приводит к появлению новых свойств и особенностей в живой природе, отличных от свойств молекулярно-генетического и онтогенетического уровней.

Популяция – элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне – изменение генотипического состава популяции; элементарный материал на этом уровне – мутации.

Выделены элементарные факторы, действующие на этом уровне: мутационный процесс, популяционные волны, изоляция и естественный отбор. Каждый из этих факторов может оказать то или иное «давление», т.е. степень количественного воздействия на популяцию, и в зависимости от этого вызывать изменения в генотипическом составе популяции.

На популяционно-видовом уровне особую роль приобретают отношения между особями внутри популяции и вида. При этом популяции выступают как элементарные, далее не разложимые эволюционные единицы, представляющие собой генетически открытые системы (особи из разных популяций иногда скрещиваются, и популяции обмениваются генетической информацией). Виды, всегда выступающие как система популяций, являются наименьшими, в природных условиях генетически закрытыми системами (скрещивание особей разных видов в природе в подавляющем большинстве случаев не ведет к появлению плодовитого потомства). Все это приводит к тому, что популяции оказываются элементарными единицами, а виды – качественными этапами процесса эволюции. В целом же на популяционно-видовом уровне реально осуществляется в чреде поколений процесс эволюции.

Популяции и виды как надындивидуальные образования способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Жизнь отдельной особи при этом находится в зависимости от процессов, протекающих в популяциях. Популяции и виды, несмотря на то, что состоят из множества особей, целостны. Но их целостность принципиально иная, чем целостность на молекулярно-генетическом и онтогенетическом уровнях. Целостность популяций и видов связана с взаимодействием особей в популяциях и поддерживается обменом генетического материала в процессе полового размножения (в отношении агамных и облигатко-партеногенетических форм этот вопрос требует дальнейшей разработки).

Популяции и виды всегда существуют в определенной среде, включающей как биотические, так и абиотические компоненты. Конкретная среда протекании процесса эволюции, идущего в отдельных популяциях,– биогеоценоз. В то же время биогеоценоз – элементарная единица следующего уровня организации жизни на Земле.

Популяции животных обычно состоят из структурных групп более низкого ранга: семьи, стада, колонии. Дробление вида на популяции есть приспособление к разнообразию условий в биосфере. Биосфера неоднородна, в ней имеются: микроэкосистемы (лесная дождевая лужа),  мезоэкосистемы (озеро, пруд, болото, дубрава, бор и т. д.),  макроэкосистемы (моря, океаны).

В связи с пятнистостью условий в биосфере распространение видов, как правило, мозаичное: каждое пятно — это популяция. Вследствие этого вид представляет собой биологическую систему, состоящую из популяций. Популяции возникают в процессе эволюции под действием естественного отбора, который «подгоняет» строение и функцию организмов к условиям местообитания в конкретных экосистемах.

5. Уровень биогеоценозов

Биоценоз — взаимосвязанная совокупность микроорганизмов, растений, грибов и животных, населяющих более или менее однородный участок суши или водоема, и характеризующихся определёнными отношениями как между собой, так и с абиотическими факторами окружающей среды.

По систематическим признакам биоценоз делится на фитоценоз, зооценоз и микробоценоз.

Фитоценоз — устойчивая естественная группировка видов растений в пределах одного биоценоза.
Зооценоз — совокупность взаимосвязанных и взаимозависимых видов животных, сложившаяся в пределах одного биоценоза.
Микробиоценоз — сообщество микроорганизмов растительного и животного происхождения. Микробиоценозы составляют бактерии, грибы, актиномицеты, микроскопические низшие водоросли и др.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Функционально биоценоз делится по ступеням экологической пирамиды на группы организмов: продуцентов, консументов и редуцентов, объединенных трофическими связями.

Структурно биоценоз делятся на горизонты, слои, ярусы, пологи, меротопы.

Биоценоз характеризуется биомассой и биологической продуктивностью. В месте с биотопом биоценоз составляет биогеоценоз.

Биогеоценоз взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии; одна из наиболее сложных природных систем. К живым компонентам Б. относятся автотрофные организмы (фотосинтезирующие зелёные растения и хемосинтезирующие микроорганизмы) и гетеротрофные организмы (животные, грибы, многие бактерии, вирусы), к косным — приземный слой атмосферы с её газовыми и тепловыми ресурсами, солнечная энергия, почва с её водо-минеральными ресурсами и отчасти кора выветривания (в случае водного Б. — вода). В каждом Б. сохраняется как однородность (гомогенная или чаще мозаичногомогенная) состава и строения компонентов, так и характер материально-энергетического обмена между ними. Особенно важную роль в Б. играют зеленые растения (высшие и низшие), дающие основную массу живого вещества. Они производят первичные органические материалы, вещество и энергия которых используются самими растениями и по цепям питания передаются всем гетеротрофным организмам.

Основные показатели биогеоценоза

Видовой состав — количество видов, обитающих в биогеоценозе.

Видовое разнообразие — количество видов, обитающих в биогеоценозе на единицу площади или объема.

В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.

Биомасса — количество организмов биогеоценоза, выраженное в единицах массы.

Б. — динамичная система. Он непрерывно изменяется и развивается в результате внутренних противоречивых тенденций его компонентов. Изменения Б. могут быть кратковременными, обусловливающими легко обратимые реакции компонентов Б. (суточные, погодные, сезонные), и глубокими, ведущими к необратимым сменам в состоянии, структуре и общем метаболизме Б. и знаменующими смену (сукцессию) одного Б. другим. Они могут быть медленными и быстрыми; последние часто происходят под влиянием внезапных перемен в результате стихийных причин или хозяйственной деятельности человека (не только преобразующего и разрушающего природные Б, но и создающего новые, культурные Б.). Наряду с динамичностью, Б. присуща и устойчивость во времени, которая обусловлена тем, что современные природные Б. — результат длительной и глубокой адаптации живых компонентов друг к другу и к компонентам косной среды. Поэтому Б., выведенные из устойчивого состояния той или иной причиной, после её устранения могут восстанавливаться в форме, близкой к исходной. Б., близкие по составу и структуре компонентов, по метаболизму и направлению развития, относят к одному типу Б., который является основной единицей биогеоценологической классификации.

6. Биосферный уровень

Биосферный уровень — высшая форма организации жизни на Земле. На этом уровне происходит объединение всех круговоротов веществ и превращения энергии в единый круговорот. Живое организовано по типу иерархичных систем: переход с одного уровня на другой связан с сохранением функциональных механизмов, действовавших на предыдущем уровне, и с появлением новых структур и функций, новых качеств. Уровень представлен биосферой — областью активной жизни. Она охватывает аэросферу (нижнюю часть атмосферы), гидробиосферу (гидросферу), террабиосферу (поверхность суши)  литобиосферу (верхнюю часть литосферы). Биосфера — достаточно тонкий слой: микробная жизнь распространена до высот 22 км над поверхностью, а в океанах наличие жизни обнаружено на глубинах до 10— 11 км ниже уровня моря. В земную кору жизнь проникает меньше, микроорганизмы найдены при бурении до глубин 2 — 3 км. Случайно живая материя попадает и в слои, лежащие рядом «над» и «под», их называют пара- и метабиосферой соответственно. Но «пленка жизни» покрывает всю Землю, даже в пустынях и льдах обнаружены следы живого. Распределение жизни крайне неравномерно. В почве (верхние слои литосферы), гидросфере и нижних слоях атмосферы — самое большое количество живого вещества.

Разработка учения о биосфере имеет свою историю. Одним из первых естествоиспытателей, смотревших на Землю как на целое, был М.В.Ломоносов. Он писал в работе «О слоях земных», что «чернозем не первообразная и не первозданная материя, но произошел от согнития животных и растущих тел со временем», что бурый уголь, каменный уголь и чернозем — результаты влияния организмов на грунт. В 1802 г. Ламарк в «Гидрогеологии» указывал на роль живых организмов в геологических процессах. В книге А. Гумбольдта «Космос» собрано много материала о влиянии живого на геологические структуры.

Зарождение отечественной агрохимии связано с Д.И.Менделеевым. Он исследовал проблемы питания растений и повышения урожайности сельскохозяйственных культур. Эффективностью минеральных и органических удобрений занимались А.Н.Энгельгардт и Д.Н.Прянишников. Возникшая в начале XX в. геохимия исходила из принципов эволюции. Почвенным лесообразованием занимался В. А. Обручев, положив началомерзлотоведению, он изучал тектонику и геологию. В.В.Докучаев своей работой «Русский чернозем» открыл почвоведение как научную дисциплину, стоящую на стыке геологии, биологии и химии. У него почва — особое природное тело, имеющее огромное значение для сельского хозяйства. Он дал первую в мире классификацию почв, изложил учение о ландшафтно-географических зонах, разработал планы борьбы с засухой, предусмотрев в них ряд агрономических и лесомелиоративных мер. Вместе с ним работали М. М. Сибирцев и П. А. Костычев. Сибирцев участвовал во многих экспедициях в южные степи России, написал первый учебник «Почвоведение» (1889). Костычев показал связь свойств почв с жизнедеятельностью растений и микроорганизмов, роль человека в изменении этих связей. Он установил (1886) решающую роль низших организмов в образовании перегноя (гумуса). Немецкий ученый Г.Гельригер показал опытным путем симбиоз бобовых культур с клубеньковыми бактериями (1888), что оказалось важным вагрономии.

Русский ученый В. Р. Вильямc доказал роль биологических факторов (природных сообществ высших зеленых растений и микроорганизмов) в формировании плодородия почв. Он первым подчеркнул значение биологического круговорота элементов в формировании не только органической, но и минеральной части почв, разработал научные основы травопольной системы земледелия (1914). Вернадский исследовал эволюцию минералов земной коры (1908), создал геохимическую классификацию химических элементов, разработал учение о миграции атомов в земной коре, заложил основы генетического направления в минералогии, и именно общие проблемы минералогии и геологии привели его к концепции биогеохимии (1917). «Биосфера» Вернадского дает целостную картину механизма формирования земной коры с учетом определяющего влияния жизни.

В. И. Вернадский создал учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов — геохимический фактор планетарного масштаба и значения. Термин «биосфера», введенный (1875) Э. Зюссом, относился к совокупности организмов, обитающих на поверхности Земли. В понятие живых организмов Вернадский включил и человека. Он выделял в биосфере косное (солнечная энергия, горные породы, минералы и т.д.) и биокосное (почвы, поверхностные воды и органические вещества). Хотя живое вещество по массе и объему составляет незначительную часть биосферы, оно играет основную роль в геологических процессах, связанных с изменением нашей планеты.

По Вернадскому, биосфера — это живое вещество планеты и преобразованное им косное вещество. Понятие «биосфера» — фундаментальное понятие биогеохимии, а не биологическое и не геологическое. Биосфера организует процессы на Земле и около Земли, в ней происходят биоэнергетические процессы и обмен веществ вследствие жизнедеятельности. Живой организм — неотъемлемая часть земной коры, могущая изменять ее. Живое вещество — совокупность организмов, участвующих в геохимических процессах. Организмы берут из окружающей среды химические элементы, строят из них тела, возвращают их в ту же среду и в процессе жизни и после своей смерти. Потому живое вещество связывает биосферу воедино, является системообразующим фактором. Изменения в живом веществе происходят существенно быстрее, чем в косном, поэтому в нем пользуются понятием исторического времени, а в косном — геологического. В ходе геологических времен растет мощь живого вещества и его воздействия на косное вещество, и только в живом веществе за эти времена происходят качественные изменения. И живое вещество, возможно, имеет свой процесс эволюции, вне зависимости от изменения среды.

Вернадский считал, что жизнь на Земле возникла одновременно с формированием планеты: «Твари Земли являются созданием космического процесса, необходимой и закономерной частью стройного космического механизма». Среди множества закономерностей, имеющих место в биологии, геологии, биохимии и геохимии, Вернадский выделил основные эмпирические принципы.

Принцип целостности биосферы обеспечивается самосогласованностью всех процессов в биосфере. Жизнь ограничена узкими пределами — физическими константами, уровнями радиации и пр.Гравитационная постоянная определяет размеры звезд, температуру и давление в них. Если она станет меньше, звезды будут иметь меньшие массы, их температура станет недостаточной для протекания ядерных реакций; если чуть больше, звезды перейдут свою «критическую массу», выйдут из общего круговорота и превратятся в черные дыры. Постоянная электромагнитного взаимодействияопределяет химические превращения, отвечает за электронную оболочку атомов и прочность связей в молекулах. Константа слабого взаимодействия, отвечающего за превращения элементарных частиц, при своем изменении «подорвет» весь наш мир. Константа сильного взаимодействия, отвечающего за стабильность ядер атомов, тоже не должна меняться, иначе в звездах реакции пойдут по-другому, могут не образоваться углерод и азот. Да и непонятно, возможна ли будет вообще жизнь нашего типа.

Принцип гармонии биосферы и ее организованности связан с предыдущим. Законы преобразования энергии на Земле, законы движения атомов есть отражение гармонии Космоса, ритмичности движения небесных тел. Основа существования биосферы — положение Земли в Космосе, наклон земной оси к эклиптике, определяющий климат и жизненные циклы всех организмов. Солнце — основной источник энергии биосферы и регулятор биологических процессов. Как отметил еще Ю. Р. Майер, «жизнь есть создание солнечного луча».

Космическая роль биосферы в трансформации энергии — можно рассматривать эту часть живой природы как дальнейшее развитие одного и того же процесса превращения солнечной световой энергии в действенную энергию Земли. Биосфера является одним и тем же космическим аппаратом с самых древнейших геологических времен. Жизнь все это время оставалась постоянной, менялась только ее форма. Само живое вещество не является случайным созданием. Источники энергии геологических явлений — космическая, преимущественно солнечная; планетная, связанная со строением и космической историей Земли; внутренняя энергия материи — радиоактивность. Живое вещество активно трансформирует солнечную энергию в химическое молекулярное движение и в сложность биологических структур.

Растекание жизни — проявление ее геохимической энергии, аналог закона инерции неживой материи. Мелкие организмы размножаются быстрее, чем крупные. Скорость передачи жизни зависит от плотности живого вещества.

Автотрофные организмы все нужное для жизни берут из окружающей их косной материи и не требуют для построения своего тела готовых соединений другого организма. Поле существования зеленых автотрофных организмов определяется прежде всего областью проникновения солнечных лучей.

Космическая энергия вызывает давление жизни, которое достигается размножением. Размножение организмов уменьшается по мере роста их количества.

Формы нахождения химических элементов: горные породы и минералы, магмы, рассеянные элементы, живое вещество. Земная кора — сложный механизм, где постоянно движутся атомы и молекулы, происходят разнообразные геохимические круговороты, определяемые в значительной мере деятельностью живого вещества. Закон бережливости в использовании живым веществом простых химических тел: раз вошедший элемент проходит длинный ряд состояний, и организм вводит в себя только необходимое количество элементов.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Жизнь на Земле полностью определяется полем устойчивости зеленой растительности. Пределы жизни определяются физико-химическими свойствами соединений, строящих организм, их неразрушимостью в определенных условиях среды. Максимальное поле жизни определяется крайними пределами выживания организмов. Верхний предел жизни обусловлен лучистой энергией, присутствие которой исключает жизнь и от которой предохраняет озоновый слой. Нижний предел связан с достижением высокой температуры. Интервал в 432 °С (от -252 до +180 °С) является предельным тепловым щитом.

Принцип постоянства количества живого вещества в биосфере. Количество свободного кислорода в атмосфере того же порядка, что и количество живого вещества (1,5-1018 кг и 1017—1018 кг). Скорость передачи жизни не может перейти пределы, нарушающие свойства газов. Идет борьба за нужный газ.

Всякая система достигает положения устойчивого равновесия, когда ее свободная энергия равняется нулю или приближается к нему, т. е. когда вся возможная в условиях системы работа произведена. Понятие устойчивого равновесия исключительно важно.

Антропный принцип, выдвинутый Г.М.Идлисом (1958), связан с первым из перечисленных здесь принципов Вернадского и состоит в точном соответствии значений мировых констант с возможностями существования жизни. Удивительная согласованность ряда величин производит впечатление, что может существовать скрытый принцип, упорядочивающий всю Вселенную. К этому факту обращались очень многие. Сейчас его формулируют в двух вариантах — слабом и сильном. Как выразился известный американский физик Дж. Дайсон: «Если мы приглядимся ко Вселенной и увидим, как много случайностей послужили нам во благо, то кажется почти, что Вселенная знала, что мы появимся». Это — одна из формулировок слабого принципа, в английской литературе — WAP. Но он не отвечает на многие вопросы, например, почему Вселенная такова, что допустила зарождение жизни. А, может, не нужно создавать теорий, которые не допускают существование наблюдателя? Сильный принцип — возникновение жизни закономерно во Вселенной, но, может, появление наблюдателя и есть цель эволюции Вселенной?

Геологическую роль живого Вернадский классифицировал по пяти категориям: энергетическая, концентрационная, деструктивная, средообразующая, транспортная. Живые организмы творят миграцию химических элементов в биосфере посредством своего дыхания, питания, обмена веществ, непрерывной сменой поколений. Биогеохимическая энергия живого является источником энергии преобразования геосфер.

Заключение

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность — это внутренняя расчлененность материального бытия, способ существования материи.

Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие (сложные) уровни образуются путём эволюции – постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.

Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами — высшими уровнями организации.

Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности — к совокупности физико-химических реакций, а организация организма — к взаимодействию молекул, клеток, тканей, органов и т.п.

Список использованных источников

1. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. – М., 2000. – 256 с.
2. Найдыш В.М. Концепции современного естествознания: Учеб. . Изд. 2-е,перераб. и доп. – М.;Альфа-М; ИНФРА-М, 2004. – 622 с.
3. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. – М., 2003. – 287 с.
4. Концепция современного естествознания: Под ред. Профессора С. И. Самыгина, Серия «Учебники и учебные пособия» -4-е изд., перераб. и доп. – Ростов н/Д: «Феникс».2003 -448c.
5. Дубнищева Т.Я. Концепция современного естествознания.: учебное пособие для студ. вузов/ 6-е изд., исправ. и допол. –М; Издательский центр «Академия», -20006.-608c.

Средняя оценка 5 / 5. Количество оценок: 1

Поставьте оценку первым.

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

7818

Закажите такую же работу

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке