Содержание

Введение
1. Биотехнология и энергетика
2. Биогаз
3. Подготовка биомассы
4. Сжигание
5. Мелкомасштабная и промышленная технология сжигания
6. Термическое повышение качества биомассы
Заключение
Список использованных источников

Введение

Биотехнология – производственное использование биологических агентов (микроорганизмы, растительные клетки, животные клетки, части клеток: клеточные мембраны, рибосомы, митохондрии, хлоропласты) для получения ценных продуктов и осуществления целевых превращений. В биотехнологических процессах также используются такие биологические макромолекулы как рибонуклеиновые кислоты (ДНК, РНК), белки – чаще всего ферменты. ДНК или РНК необходима для переноса чужеродных генов в клетки.

Люди выступали в роли биотехнологов тысячи лет: пекли хлеб, варили пиво, делали сыр, другие молочнокислые продукты, используя различные микроорганизмы и даже не подозревая об их существовании. Собственно сам термин «биотехнология» появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др. Вероятно, древнейшим биотехнологическим процессом было брожение. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981 г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э. В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение и получение молочнокислых продуктов. В традиционном, классическом, понимании биотехнология — это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии, новую биопроцессорную технику, и более традиционные формы. Так, обычное производство спирта в процессе брожения – «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта – «новая» биотехнология. [3]

Современная биотехнология тесно стыкуется с рядом научных дисциплин, осуществляя их практическое применение или же являясь их основным инструментом.

1. Биотехнология и энергетика

Последние десятилетия характеризуются все возрастающим интересом к исследованию биологических систем. Это стало возможным благодаря достаточно глубокому пониманию фундаментальных основ молекулярных процессов в таких биосистемах. Например, глубокое изучение механизмов ферментативных реакций, исследование структуры и функции ферментов, разработка методов их получения и иммобилизации привели к возникновению инженерной энзимологии – отрасли науки и техники, использующей ферменты как катализаторы ряда принципиально новых химических процессов. Развитие методов деполимеризации целлюлозы дало возможность разработать способы переработки целлюлозы для получения пищевых продуктов, сырья для микробиологической промышленности, получения белка, сырья для производства ряда топлив и продуктов органического синтеза.

Весьма перспективно использование в биотехнологии термофильных микроорганизмов, не боящихся сравнительно высокой температуры. Применение таких микроорганизмов в ряде случаев очень эффективно, поскольку повышение температуры потенциально способно обеспечить более высокие скорости реакций и производительность процессов.

Принципиально важные изменения в ближайшие десятилетия будут связаны с переходом на новые источники энергии. Прогрессирующий дефицит ископаемых топлив ставит перед современной наукой задачи, связанные с разработкой новых процессов, ориентированных на возобновляемые сырьевые и энергетические источники.

Об этом со всей остротой примерно 15 лет назад заявил академик Н. Н. Семенов. Он подчеркнул важность промышленного использования солнечной энергии и ориентировал на решение этой проблемы многие научные коллективы. Большой интерес в последние годы вызывают работы, направленные на получение газообразного топлива из биомассы. Речь идет о широкомасштабной переработке отходов сельскохозяйственного производства и городского хозяйства в метан. Оценки показывают, что даже для энергетически развитых стран производство биогаза может составить заметную часть общей выработки энергии. В последнее время интерес к фундаментальному изучению систем получения топлив на основе биомассы и их практическому использованию достаточно широк во всем мире. Национальные программы в этой области существуют в США, Великобритании, Франции, Бразилии, Японии, Канаде, КНР, Индии, во многих развивающихся странах. В разработке систем преобразования солнечной энергии с получением топлива уже имеются существенные научные и технические достижения.

В качестве примера одной из таких разработок можно привести так называемые «энергетические фермы». Ферма представляет собой гигантскую теплицу площадью примерно 1 км2, большой высоты, построенную из прозрачного пластика, способного достаточно эффективно удерживать двуокись углерода. Теплица технологически сопряжена с установкой для экстракции из растений белка и с тепловой станцией, где углеводная часть биомассы используется для выработки электроэнергии.

На ферме предполагается с высокой эффективностью выращивать в газовой среде, обогащенной углекислотой, растения с повышенным содержанием белка (например, люцерну). Благодаря повышенному выходу фотосинтеза может быть получена биомасса в количестве 200 т/га в год. Люцерна содержит до 24% белка, его можно использовать для питания человека.

И все же самое узкое место подобных схем с энергетической точки зрения – производство биомассы: средняя эффективность преобразования солнечной энергии при фотосинтезе составляет всего 0,1-1% Это заставляет искать иные биотехнологические процессы, в которых достигались бы более высокие коэффициенты преобразования энергии. Один из таких процессов – биофотолиз воды, то есть использование механизмов фотосинтеза для ее разложения под действием солнечного света с получением свободных кислорода и водорода.

Такая система разработана недавно в МГУ профессором С. Варфоломеевым и его сотрудниками. Она открывает вполне реальную перспективу создания новой отрасли энергетики, основанной на биотехнологическом получении молекулярного водорода – топлива высококалорийного и экологически чистого. [4]

2. Биогаз

Биогаз образуется с помощью бактерий в процессе разложения органического материала при анаэробных (без доступа воздуха) условиях и представляет собой смесь метана и других газов.

Теплотворная способность одного кубометра биогаза составляет в зависимости от содержания метана 20-25 МДЖ/м3, что эквивалентно сгоранию 0,6 – 0,8 литра бензина, 1.3 – 1.7 кг дров или использованию 5 – 7 кВт электроэнергии.

В процессе сбраживания сырья в биогазовых установках бактерии, производящие метан, разлагают органическое вещество и возвращают продукты разложения в виде биогаза и других компонентов в окружающую среду. Знание процесса сбраживания необходимо для выбора конструкции, строительства и эксплуатации биогазовых установок.

В принципе, все органические вещества подвержены процессам брожения и разложения. Однако в простых биогазовых установках предпочтительно перерабатывать только однородные и жидкие органические отходы: экскременты и урину скота, свиней и птиц.

В более сложных биогазовых установках можно перерабатывать и другие виды органических отходов – растительные остатки и твердые мусорные отходы. Объем вырабатываемого биогаза зависит от типа используемого сырья и температуры процесса сбраживания.

Биогаз может быть использован в любых газовых приборах так же, как используется природный газ. Наиболее эффективным является использование биогаза для приготовления пищи, обогрева помещений, выработки электроэнергии и заправки автомобилей. [3]

3. Подготовка биомассы

Перед сжиганием тем или иным способом большинство типов биомасс необходима определенным образом подготовить. Типы биомасс могут варьировать от плотных, относительно сухих материалов, таких, как древесина, до очень влажных, обладающих низкой теплотворной способностью, таких, как канализационные стоки и морские водоросли. Другие материалы, такие, как солома, обладая низкой влажностью, имеёт малую плотность, и поэтому работа с ними является затруднительной. Наиболее важными этапами подготовки биомассы являются измельчение, сортировка по размерам частиц, сушка и хранение.

Необходимые размеры древесины получают путем распила, раскола и измельчения. Предварительная сушка на воздухе проводится не всегда, в зависимости от техники сжигания. Используют и другой метод подготовки древесины, называемый “уплотнением”. В ходе этого процесса древесину сушат, измельчают, сортируют по размерам частиц и добавляют связующие агенты. Полученный материал брикетируют или прессуют в более плотную массу с содержанием влаги около 7%. В целом эта технология способствует улучшению свойств биомассы как топлива приближая их к свойствам угля. Этот процесс является дорогостоящим и может более чем в двое повысить цену топлива, но он тем не менее обеспечивает получение материала, способного заменить обычные виды топлива; в некоторых районах потребители готовы оплачивать эти лишние издержки.

Хранение биологического сырья представляет особую проблему вследствие его большого объема, зачастую сезонного его поступления, а также склонности к биологическому разложению. Обычные виды топлива не имеёт подобного рода недостатков. В некоторых случаях невозможно обеспечить подачу топлива в соответствии с необходимым выделением тепла, поэтому необходима установка печей (бойлеров); способных работать как на обычном топливе, так и на биомассе. [4]

4. Сжигание

Простейшим методом получения полезной энергии из сухой биомассы является её сжигание на воздухе.

Теплота реакции составляет от 16 до 24ГДж/т абсолютно сухой биомассы, в зависимости от её типа. Если количество кислорода недостаточно для полного окисления горючего материала, тогда происходит образование углерода, оксида углерода, углеводородов и других газов, а теплота реакции снижается. Азот и другие элементы, присутствующие в биомассе, превращаются в газообразные продукты и золу.

Присутствие воды в биомассе не снижает термодинамического выхода тепла, однако практическая эффективность реакции снижается вследствие необходимости нагрева воды и её испарения при температуре сжигания. Вода также снижает температуру пламени и скорость сжигания. Содержание воды более 30% не дает возможности прямого сжигания биомассы, поэтому материал должен быть высушен или же к нему следует добавить топливо. Однако использование печей с псевдо сжиженным слоем материала позволяет проводить сжигание при содержании воды до 55%. Были предложены регенеративные печи, повторно использующие тепло испарившейся воды и газообразных продуктов сгорания; в этих условиях теоретически возможно сжигание материалов, насыщенных влагой. Сжигание в соответствующих камерах сгорания может явиться одним из наиболее эффективных методов использования энергетического потенциала биомассы. В печах прямого нагрева и паровых котлах использование теплы составляет 85%, однако многие установки на практике являются значительно менее эффективными. [2]

5. Мелкомасштабная и промышленная технология сжигания

Самый простой метод сжигания биомассы – это сжигание на открытом огне. В этих случаях эффективность сжигания очень низка. При сжигании топлива в традиционных печах отношение выделившейся энергии к энергии подведенной может быть менее 10%. В последние годы были сконструированы эффективные дровяные печи и бойлеры. Значительная потеря тепла в простых топках происходит из-за чрезмерной тяги в дымоходе; простое ограждение для огня и ограничение тяги повышает эффективность сгорания до 25%. В настоящее время имеются значительно более эффективные дровяные печи; комната, где установлена такая печь, получает до 70% энергии сгорания топлива или в результате излучения, или в результате конвекции. Однако средняя эффективность дровяных печей составляет все еще около 50%.

Основным недостатком многих систем является трудность обеспечения автоматической подачи топлива и необходимость постоянного внимания со стороны пользователей. В целях частичного решения проблемы были созданы системы, предназначенные для использования многих видов топлива; при желании работа в автоматическом режиме достигается путем переключения на ископаемые виды топлива.

Основной проблемой небольших систем сжигания биомассы является накопление агрессивных масел и смол в более холодных частях дымохода. Эти скопления необходимо периодически удалять; дымоход можно очищать также путем пропускания через него горячих газов (однако наряду с удалением нежелательных соединений теряется и полезное тепло). [4]

Биомасса обычно используется в промышленности в качестве топлива только в тех случаях, когда она представляет собой остатки от переработки биологических материалов другие, более ценные, продукты. Это имеет частичное значение с точки зрения охраны окружающей среды, так как удаление остатков является часто затруднительным. Два вида топлива биологического происхождения уже используются в промышленности, и методы сжигания их являются документально обоснованными: один вид топлива – солома, получаемая в сельском хозяйстве, другой – древесные отходы деревообрабатывающей промышленности.

Отрасли деревообрабатывающей промышленности используют древесные остатки для парообразования на месте производства. Пар используется для поддержания температурных условий процесса и для выработки электроэнергии. Горячие продукты сгорания могут использоваться для сушки. Общие отходы деревообрабатывающей промышленности могут составлять до 50% от массы сырья. Содержание влаги в отходах составляет 30-50%. Паровые установки, использующие эти отходы, сжигают до 250 000кг/ч. Используется несколько типов бойлеров и печей –  датские печи, печи с механической загрузкой, печи с наклонной решёткой. Сжигается как влажная (до 30% влаги), так и сухая древесина. Эффективность может быть такой же высокой, как и при сжигании других видов твердого топлива. Однако оборудование для сжигания часто включает высокоэффективные газовые и масляные установки (на случай отсутствия отходов).

Сжигание широко используется в целях утилизации городских и промышленных отходов. Несмотря на существование множества проектов по использованию полученного тепла для обогрева жилых домов, в большинстве случаев это тепло не используется. Стоимость сжигания может быть неожиданно высокой, но здесь первостепенное значение имеет борьба с загрязнением окружающей среды, а для некоторых отходов сжигания является единственно приемлемым способом их утилизации. [1]

6. Термическое повышение качества биомассы

Основной целью всех процессов повышения качества биомассы является превращение её в стабильное транспортабельное топливо, способное заменить ископаемые виды топлива без использования специального оборудования для погрузочно-разгрузочных работ. Путем сочетания нагрева и частичного сжигания биологических материалов можно получить твердые, жидкие и газообразные соединения, обладающие, по крайней мере, некоторыми свойствами угля, нефти и природного газа. В Интернете описано много процессов, широко использовавшихся в прошлом; производство газа для использования его в качестве топлива путем сухой перегонки и газификации угля и биомассы было начато почти 200 лет назад. Различные термические процессы повышения качества биомассы, предлагаемые в настоящее время и использовавшиеся в прошлом, имеют много общих черт.

При нагревании биомассы происходит распад углеродсодержащих молекул с образованием ряда газообразных, жидких и твердых продуктов. Специфические продукты реакции определяются температурой реакции, тепловой мощностью, степенью измельчения и типом биомассы, а также присутствием неорганических примесей и катализатора. Тепло, необходимое для осуществления этих изменений, носящих эндотермический характер, подводится или из внешнего источника, или путём введения воздуха или кислорода в реактор и сжигания части биологического материала.

Термины «сухая перегонка», «газификация» и «сжижение» не имеют точного значения в литературе. Газификация и сжижение биомассы происходят как в присутствии, так и в отсутствие окислительных (O2,(Воздух) и восстановительных (CO, H2) газов, обычно связанных с этими процессами. Сухая перегонка рассматривается отдельно как анаэробный процесс. Превращение биомасса в газы при сжигании на месте рассматривается как газификация. Понятие «сжижение» охватывает восстановление биомассы до масел под действием восстановительных газов, полученных также из биомассы.

Сухая перегонка. Нагрев биомассы приводит к удалению влаги. При температуре выше 100оС биомасса начинает разлагаться, а между 250 и 600оС основными продуктами являются уголь и маслянистая кислая смесь дегтя и различных количеств метанола, уксусной кислоты, ацетона и следы других органических веществ. До развития нефтехимической промышленности источником этих соединений была перегонка древесины. В качестве примера можно рассматривать пиролиз целлюлозы. При температуре свыше 600о С жидкие продукты пиролиза могут быть газифицированы, а свыше 800oС газифицируется также и уголь в результате эндотермической реакции углеродсодержащих молекул с водой с образованием синтез газа, смеси оксида углерода и водорода. Пиролиз – термическое разложение органических соединений без доступа воздуха.

Газификация. Газификация биомассы кислородом дает газ средней энергоемкости, содержащий в основном оксид углерода и водород. Аналогичная реакция происходит на воздухе, но образующиеся газы разбавляются азотом, снижающим теплотворную способность. Химические процесс газификации представляет собой сочетание химического процесса сжигания с некоторыми реакциями пиролиза, описанными в предыдущем разделе. Уголь, полученный в результате пиролиза, реагирует с паром или диоксидом углерода с образованием синтез газа.

Сжижение. Были разработаны предложения по превращению биомассы в жидкость, напоминающую тяжелую топливную нефть, путем реакции ее с восстановительными газами (оксид углерода и водород) в присутствии катализатора. Обычно необходимо давление 250 бар и температура 600-700оС. Процессы сжижения обычно предполагают подготовку восстановительных газов путем пиролиза или окислительной газификации большего количества биомассы. В редких случаях можно получить дешевый водород из других источников, например при электролизе воды на гидроэлектрических установках. [4]

Подготовка биомассы. Высокая влажность биомассы представляет собой непосредственную проблему при осуществлении всех процессов повышения качества биотоплива вследствие затрат энергии на испарение воды и разбавления продуктов реакции не прореагировавшим паром. Большинство методов включают стадию высушивания при использовании уже частично высушенных материалов; однако в материале допускается определенное количество воды, которое необходимо для образования синтез газа (паровая газификация). Биомасса, содержащая более 30% воды, потребует, очевидно, сушки перед осуществлением любых процессов.

Для облегчения процесса сушки, а также достижения требуемой скорости реакции в процессе тепловой обработки биомасса должно быть измельчена с получением соответствующих размеров частиц. Технологическая схема включает дробильные, измельчительные и размалывающие установки. Если биологический материал представляет часть общих отходов, необходим предварительный отсев негорючих и других примесей. «Уплотненная биомасса» может быть использована для процессов обогащения без дальнейших обработок. [2]

Заключение

Полноценное и последовательное развитие мировой биоэнергетики невозможно без получения исчерпывающей и достоверной информации о достоинствах и преимуществах этого вида альтернативных источников энергии.

Преимущества биотоплива всем известны. Ведь производить биотопливо можно из самых разных органических материалов. А это означает, что развитие биоэнергетики, в отличие от других видов альтернативных источников энергии, возможно в любом регионе или стране мира, вне зависимости от климатических условий или рельефа. Кроме того, производство биотоплива поможет решить проблемы, связанные с утилизацией мусора. Это означает, что есть реальные перспективы решения весьма важной проблемы, которая уже давно заботит многих учёных, политиков и простых людей во всём мире. Теперь то, что представляло угрозу экологической безопасности планеты и являлось головной болью многих землян, может принести неоценимую пользу. Но не всё так просто.

Наряду с очевидными преимуществами, существуют и недостатки биоэнергетики. Так, многие учёные опасаются уничтожения лесов и нанесения вреда окружающей среде.

В то же время, по мнению, некоторых исследователей, массовое выращивание растений, предназначенных для производства биотоплива, способно истощить плодородные земли и послужить причиной голода во многих странах третьего мира. Это понимают многие ,и все перечисленные факторы тормозят развитие биоэнергетики. Конечно, указанные недостатки серьёзны и требуют тщательного изучения.Но все же хочется надеяться, что в скором времени человечество научится в полной мере использовать преимущества и бороться с недостатками биоэнергетики.

Во всяком случае, потенциал биотоплива заслуживает того, чтобы приложить определённые усилия для его реализации. [1]

Список использованных источников

1. Сассон, А. Биотехнология: свершения и надежды [Текст]: пер. с англ. / А. Сассон; ред., с предисл. и допл. В. Г. Дебабова – Москва: Изд-во Мир, 2001. – 411с.
2. Егоров, Н.С. Биотехнология. Проблемы и перспективы [Текст]: учеб. пособие для вузов в 8 кн./ Н. С. Егоров, А. В. Олескин, В. Д. Самуилов –, М.: Высшая школа, 2000. – 159 с.
3. Вакула, В.Л. Биотехнология: что это такое? [Текст] / В.Л. Вакула- Москва: Изд-во Молодая гвардия, 2001. – 301с.
4. Кузьмина, Н.А. Биотехнология: введение, промышленные аспекты [Текст]: учеб. пособие для студ. биол. фак. педвузов / Н.А. Кузьмина; Омск. гос. пед. ун-т – Омск, 2010. – 88 с.