Дипольным моментом обладают многие молекулы, напри­мер двухатомная молекула СО (атом С имеет небольшой положительный заряд, а О – небольшой отрицательный заряд); несмотря на то что молекула в целом нейтральна, в ней происходит разделение зарядов из-за неравного распределения электронов между двумя атомами. (Сим­метричные двухатомные молекулы, такие, как О2, не обладают дипольным моментом.)

Рассмотрим вначале диполь с моментом ρ = Ql, помещенный в однородное электрическое поле напряженностью Ε . Дипольный момент можно пред­ставить в виде вектора р, равного по абсолютной величи­не Ql и направленного от отрицательного заряда к поло­жительному. Если поле однородно, то силы, действующие на положительный заряд, QE, и отрицательный, — QE, не создают результирующей силы, действующей на диполь. Однако они приводят к возникновению вращающего мо­мента, величина которого относительно середины диполя О равна

или в векторной записи

В результате диполь стремится повернуться так, чтобы вектор p был параллелен Е. Работа W, совершаемая электрическим полем над диполем, когда угол θ изме­няется от 1 до 2 , дается выражением

В результате работы, совершаемой электрическим полем, уменьшается потенциальная энергия U диполя; если по­ложить U = 0, когда pΕ (θ = 900), то

U=-W=- pEcos θ = – p · Ε.

Если электрическое поле неоднородно, то силы, действую­щие на положительный и отрицательный заряды диполя, могут оказаться неодинаковыми по величине, и тогда на диполь, кроме вращающего момента, будет действовать еще и результирующая сила.

Итак, мы видим, что происходит с электрическим диполем, помещенным во внешнее электрическое поле. Обратимся теперь к другой стороне дела.

-Q l/2 0 l/2 +Q

рис. Электрическое по­ле, создаваемое электрическим диполем.

Предположим, что внешнее поле отсутствует, и определим электрическое поле, создаваемое самим диполем (способное действовать на другие заряды). Для простоты ограничимся точками, расположенными на перпендикуляре к середине диполя, подобно точке Ρ на рис. ???, находящейся на расстоя­нии r от середины диполя. (Заметим, что r на рис.??? не является расстоянием от каждого из зарядов до Р, кото­рое равно (r2 + /2/4)1/2) .Напряженность электрического поля в: точке Ρ равна

Ε = Ε+ + Ε ,

где Е+ и Е – напряженности поля, создаваемые соот­ветственно положительным и отрицательным зарядами, равные между собой по абсолютной величине:

Их y-компоненты в точке Ρ взаимно уничтожаются, и по абсолютной величине напряженность электрического поля Ε равна

,

или

[вдоль перпендикуляра к середине диполя].

Вдали от диполя (r » /) это выражение упрощается:

[вдоль перпендикуляра к середине диполя, при r >> l].

Видно, что напряженность электрического поля диполя убывает с расстоянием быстрее, чем для точечного заряда (как 1/r3 вместо 1/r2). Этого и следовало ожидать: на больших расстояниях два заряда противоположных знаков кажутся столь близкими, что нейтрализуют друг друга. Зависимость вида 1/r3 справедлива и для точек, не лежащих на перпендикуляре к середине диполя.