Например,.

Определителем произвольной квадратной матрицы третьего порядка называется сумма шести слагаемых, каждое из которых представляет собой произведение трех элементов матрицы, выбираемых по следующему правилу: три произведения элементов, стоящих на главной диагонали и в вершинах двух треугольников: , берутся со знаком “+”, а три произведения элементов, стоящих на второй диагонали и в вершинах двух других треугольников: , берутся со знаком “-“.

Например,

Свойство1. Важным свойством определителей является следующее соотношение:

det A = det AT;

Свойство 2. det ( A  B) = det A  det B.

Свойство 3. det (AB) = detAdetB

Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.

Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.

Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.

Определение: Столбцы (строки) матрицы называются линейно зависимыми, если существует их линейная комбинация, равная нулю, имеющая нетривиальные (не равные нулю) решения.

Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)

Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте вашу оценку

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

1317
Закажите помощь с работой

Не отобразилась форма расчета стоимости? Переходи по ссылке

Не отобразилась форма расчета стоимости? Переходи по ссылке

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *