Алгоритм решения уравнений

Внимание!

Если вам нужна помощь с академической работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Расчет стоимости Гарантии Отзывы

Теорема

Алгебраическое уравнение – это уравнение вида f_{1}(x) = g_{1}(x).

Решить уравнение – это значит найти все его решения или доказать, что решений нет.

Примеры решений уравнений

Пример 1

Задача

Решить уравнение:

    \[\frac{1}{x^{3} + 2} - \frac{1}{x^{3} + 3} = \frac{1}{12}\]

Решение

Найдём область допустимых значений:

    \[\left\{ \begin{array}{ll} x \neq \sqrt[3]{2}, \\ x \neq \sqrt[3]{3}; \end{array} \right.\]

    \[\frac{x^{6} + 5x^{3} - 6}{12(x^{3} + 2)(x^{3} + 3)} = 0\]

    \[\left\{ \begin{array}{ll} x^{6} + 5x^{3} - 6 = 0, \\ (x^{3} + 2)(x^{3} + 3) \neq 0; \end{array} \right.\]

Обозначим x^{3} = y

Уравнение x^{6} + 5x^{3} - 6 = 0 преобразуется к виду

    \[y^{2} + 5y - 6 = 0\]

    \[y_{1} = -6,\ y_{2} = 1\]

Отсюда x^{3} = -6,\ x^{3} = 1,\ x_{1} = -\sqrt[3]{6},\ x_{2} = 1

Ответ

x_{1} = -\sqrt[3]{6},\ x_{2} = 1

Пример 2

Задача

Решить уравнение:

    \[\log_{4x + 1}7 + \log_{9x}7 = 0\]

Решение

Найдём область допустимых значений:

\left\{ \begin{array}{ll} 0 < 4x + 1 \neq 1, \\ 0 < 9x \neq 1; \end{array} \right. или 0 < x \neq \frac{1}{9}

Перейдём к логарифмам по основанию 7:

    \[\frac{1}{\log_{7}(4x + 1)} + \frac{1}{\log_{7}9x} = 0\]

    \[\log_{7}9x = -\log_{7}(4x + 1)\]

    \[9x = \frac{1}{4x + 1}\]

    \[36x^{2} + 9x - 1 = 0\]

    \[x_{1} = \frac{1}{12},\ x_{2} = -\frac{1}{3}\]

x_{2} = -\frac{1}{3} не подходит по ОДЗ

Ответ

x = \frac{1}{12}

Пример 3

Задача

Решить уравнение:

Важно!

Если вы не уверены, что справитесь с работой самостоятельно, обратитесь к профессионалам. Сдадим работу раньше срока или вернем 100% денег

Стоимость и сроки

    \[x^{2} - 1 = \frac{x + 1}{4}\]

Решение

    \[4(x^{2} - 1) = x + 1\]

    \[4x^{2} - x - 2 = 0\]

Найдём дискриминант:

    \[D = (-1)^{2} - 4\cdot4\cdot(-2) = 33\]

    \[x_{1} = \frac{-(-1) + \sqrt{33}}{2\cdot4} = \frac{1 + \sqrt{33}}{8}\]

    \[x_{2} = \frac{-(-1) - \sqrt{33}}{2\cdot4} = \frac{1 - \sqrt{33}}{8}\]

Ответ

x_{1} = \frac{1 + \sqrt{33}}{8},\ x_{2} = \frac{1 - \sqrt{33}}{8}

Пример 4

Задача

Решить уравнение:

    \[2\lg x^{2} - (\lg(-x))^{2} = 4\]

Решение

Найдём область допустимых значений:

x < 0

    \[4\lg(-x) - \lg^{2}(-x) - 4 = 0\]

    \[\lg^{2}(-x) - 4\lg(-x) + 4 = 0\]

    \[(\lg(-x) - 2)^{2} = 0\]

    \[(\lg(-x) = 2,\ x = 100\]

Ответ

x = 100

Пример 5

Задача

Решить уравнение:

    \[\frac{b}{x - a} - \frac{a}{x - b} = 2\]

Решение

ОДЗ: x \neq a, x \neq b

    \[\frac{2x^{2} - 3(a + b)x + (a + b)^{2}}{(x - a)(x - b)} = 0\]

    \[2x^{2} - 3(a + b)x + (a + b)^{2} = 0\]

    \[x_{1} = \frac{-(- 3(a + b)) + \sqrt{(- 3(a + b))^{2} - 4\cdot2\cdot(a + b)^{2}}}{2\cdot2} = \frac{a + b}{2}\]

    \[x_{2} = \frac{-(- 3(a + b)) - \sqrt{(- 3(a + b))^{2} - 4\cdot2\cdot(a + b)^{2}}}{2\cdot2} = a + b\]

Ответ

x_{1} = \frac{a + b}{2},\ x_{2} = a + b

Пример 6

Задача

Решить уравнение:

    \[\frac{\log_{2}(9 - 2^{x})}{3 - x} = 1\]

Решение

Когда нет времени!

Помощь в написании работы от 1 дня. Гарантируем сдачу работу к сроку без плагиата, только авторский текст. Оформление + сопровождеие в подарок!

Узнать стоимость Список услуг Задать вопрос

Найдём область допустимых значений:

\left\{ \begin{array}{ll} 9 - 2^{x} > 0, \\ 3 - x \neq 0; \end{array} \right. или 3 \neq x < \log_{2}9

    \[\log_{2}(9 - 2^{x}) = 3 - x\]

    \[9 - 2^{x} = 2^{3 - x}\]

    \[2^{2x} -9\cdot2^{x} + 8 = 0\]

    \[2^{x} = 1,\ x_{1} = 0\]

    \[2^{x} = 8,\ x_{2} = 3\]

x_{2} = 3 не подходит по ОДЗ

Ответ

    \[x = 0\]

Пример 7

Задача

Решить уравнение:

    \[\frac{4}{x^{2} + 4} - \frac{5}{x^{2} + 5} = 2\]

Решение

    \[\frac{2x^{4} + 9^x{2}}{(x^{2} + 4)(x^{2} + 5)} = 0\]

    \[2x^{4} + 9x^{2} = 0\]

    \[x^{2}(2x^{2} + 9) = 0\]

x^{2} = 0,\ x_{1} = 0 или 2x^{2} + 9 = 0,\ x^{2} = -\frac{9}{2} – решений нет

Ответ

x = 0

Пример 8

Задача

Решить уравнение:

    \[\log_{a^{2}}x^{3} + \log_{a}(x - 1) = \log_{a}\log_{\sqrt{5}}5\]

Решение

Найдём область допустимых значений:

    \[\left\{ \begin{array}{ll} x > 1, \\ 0 < a \neq 1; \end{array} \right.\]

    \[\log_{a}x + \log_{a}(x - 1) = \log_{a}2\]

    \[\log_{a}x(x - 1) = \log_{a}2\]

    \[x^{2} - x - 2 = 0,\ x_{1} = 2,\ x_{2} = -1\]

x_{2} = -1 не подходит по ОДЗ

Ответ

    \[x = 2\]

Пример 9

Задача

Решить уравнение:

    \[|x| + |x - 1| = 1\]

Решение

Рассмотрим три случая.

Первый случай:

При x < 0 исходное уравнение принимает вид:

    \[- x -x + 1 = 1\]

Отсюда x = 0 – решений нет, т.к. по условию x < 0

Второй случай:

При 0 \leq x < 1 исходное уравнение принимает вид:

    \[x - x + 1 = 1\]

    \[1 = 1\]

Отсюда x \in [0; 1)

Третий случай:

При x \geq 1 исходное уравнение принимает вид:

    \[x + x - 1 = 1\]

Отсюда x = 1

Ответ

x \in [0; 1]

Пример 10

Задача

Решить уравнение:

    \[\frac{1}{x(x + 2)} - \frac{1}{(x + 1)^{2}} = \frac{1}{12}\]

Решение

ОДЗ: x \neq 0,\ x \neq -1,\ x \neq -2

Обозначим:

    \[x^{2} + 2x = z\]

Тогда:

    \[\frac{1}{z} - \frac{1}{z + 1} = \frac{1}{12}\]

    \[\frac{1}{z} - \frac{1}{z + 1} = 0\]

    \[-z^{2} - z + 12 = 0\]

    \[z_{1} = \frac{-(-1) + \sqrt{(-1)^{2} - 4\cdot(-1)\cdot12}}{2\cdot(-1)} = -4\]

    \[z_{2} = \frac{-(-1) - \sqrt{(-1)^{2} - 4\cdot(-1)\cdot12}}{2\cdot(-1)} = 3\]

    \[x^{2} + 2x = -4\]

    \[x^{2} + 2x + 4 = 0\]

D = 2^{2} - 4\cdot1\cdot4 = -12 < 0 – корней нет

    \[x^{2} + 2x = 3\]

    \[x^{2} + 2x - 3 = 0\]

    \[x_{1} = \frac{-2 + \sqrt{2^{2} - 4\cdot1\cdot(-3)}}{2\cdot1} = 1\]

    \[x_{2} = \frac{-2 - \sqrt{2^{2} - 4\cdot1\cdot(-3)}}{2\cdot1} = -3\]

Ответ

x_{1} = 1,\ x_{2} = -3

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте вашу оценку

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

396

Помощь студентам

Узнайте, сколько стоит ваша работа

Не отобразилась форма расчета стоимости? Переходи по ссылке

Смотрите также