Связанные заряды принадлежат данной молекуле и без больших затрат энергии не могут ее покинуть. В зависимости от концентрации свободных зарядов различают три типа веществ – проводники диэлектрики и полупроводники.

Проводник – вещество с большой концентрацией свободных зарядов. К проводникам относятся все металлы в жидком и твердом состояниях, водные растворы солей и кислот и многие другие вещества.

Если поместить проводник во внешнее электростатическое поле или зарядить его, то под действием поля свободные заряды в проводнике придут в движение. Перемещение зарядов продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника не станет равным нулю. Если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии.

Вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы существовала касательная составляющая поля, то заряды перемещались бы вдоль поверхности проводника, что противоречило бы равновесному распределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности проводника.

Напряженность электростатического поля у поверхности проводника определяется поверхностной плотностью зарядов:

где – диэлектрическая проницаемость среды, окружающей проводник.

Отсутствие поля внутри проводника означает, что потенциал внутри проводника и во всех точках его поверхности постоянен, т.е. поверхность проводника эквипотенциальна. Соединение заряженного проводника с другим проводником приведет к тому, что заряды между проводниками перераспределяться так, чтобы потенциалы проводников выровнялись. В этом состоит принцип “заземления”, т.е. соединения проводника с Землей: потенциал заземленного проводника будет равен потенциалу Земли.

На больших расстояниях от проводника эквипотенциальные поверхности имеют характерную для точечного заряда форму сферы. По мере приближения к проводнику эквипотенциальные поверхности становятся все более сходными с поверхностью проводника, которая является эквипотенциальной. Вблизи выступов эквипотенциальные поверхности располагаются гуще, значит, и напряженность поля здесь больше. Следовательно, плотность зарядов здесь особенно велика. К этому же выводу можно прийти, учтя, что из-за взаимного отталкивания заряды стремятся расположиться как можно дальше друг от друга.

Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже . Соответственно, напряженность поля и плотность зарядов в этих местах будет меньше.

Плотность зарядов при данном потенциале проводника растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости).

Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные – по полю, отрицательные – против поля.

На одном конце проводника будет скапливаться избыток положительного заряда, на другом – отрицательного. Эти заряды называются индуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряженности вне проводника – перпендикулярными его поверхности.

Нейтральный проводник, внесенный в электрическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростатической индукцией. Индуцированные заряды появляются на проводнике вследствие смещения их под действием поля, т.е. является поверхностной плотностью смещенных зарядов.

Так как в состоянии равновесия заряды внутри проводника отсутствуют, то создание внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Следовательно, внутри полости поле будет отсутствовать. Если этот проводник с полостью заземлить, то потенциал во всех точках полости будет нулевым, т.е. полость полностью изолирована от влияния внешних электростатических полей. На этом основана электростатическая защита – экранирование тел, например электрических приборов, от влияния внешних электростатических полей. Вместо сплошного проводника для защиты может быть использована густая металлическая сетка. При этом поля по обе стороны оболочки не зависят друг от друга.

Полый проводник экранирует поле только внешних зарядов. Если заряды находятся внутри полости, то индуцированные заряды возникнут на внешней и внутренней поверхностях проводника. При этом заряды распределятся так, чтобы результирующее поле зарядов внутри полости и индуцированных зарядов в любой точке в толще проводника было равно нулю. Внутри полости поле не будет равно нулю.

Свойство зарядов располагаться на внешней поверхности проводника используется для устройства электростатических генераторов, предназначенных для накопления больших зарядов и достижения разности потенциалов в несколько миллионов вольт. Электростатические генераторы применяются в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.