Теорема Виета помогает решать квадратные уравнения путём подбора. В этой статье даны определения, доказательства, формулы и примеры решений квадратных уравнений для чайников.
Содержание
Что такое теорема Виета
Внимание!
Если вам нужна помощь с академической работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета
Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).
Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.
При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.
Доказательство теоремы Виета
Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно,
.
Допустим у нас есть уравнение: . У этого уравнения есть такие корни:
и
. Докажем, что
,
.
По формулам корней квадратного уравнения:
,
.
1. Найдём сумму корней:
.
Разберём это уравнение, как оно у нас получилось именно таким:
=
.
Шаг 1. Приводим дроби к общему знаменателю, получается:
=
=
.
Шаг 2. У нас получилась дробь, где нужно раскрыть скобки:
=
=
. Сокращаем дробь на 2 и получаем:
.
Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.
2. Найдём произведение корней:
=
= =
=
=
=
.
Докажем это уравнение:
.
Шаг 1. Есть правило умножение дробей, по которому мы и умножаем данное уравнение:
.
Шаг 2. Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:
.
Теперь вспоминаем определение квадратного корня и считаем:
=
.
Шаг 3. Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем
, тогда получается:
=
.
Шаг 4. Раскрываем скобки и приводим подобные слагаемые к дроби:
.
Шаг 5. Сокращаем «4a» и получаем .
Вот мы и доказали соотношение для произведения корней по теореме Виета.
ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.
Теорема, обратная теореме Виета
Важно!
Если вы не уверены, что справитесь с работой, обратитесь за помощью к профессионалам. Работу могут написать преподаватели, доцены вузов
По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.
Если числа и
такие:
и
, тогда они и есть корнями квадратного уравнения
.
Доказательство обратной теоремы Виета
Шаг 1. Подставим в уравнение выражения для его коэффициентов:
Шаг 2. Преобразуем левую часть уравнения:
;
.
Шаг 3. Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:
или
. Откуда и получается:
или
.
Примеры с решениями по теореме Виета
Задание
Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.
Решение
Шаг 1. Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть,
,
– это заменяет
, а
. Отсюда следует:
. Получается:
. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма
, а произведение
.
Выразим сумму квадратов корней через их сумму и произведение:
.
Ответ
7; 12; 25.
Задание
Решите уравнение . При этом не применяйте формулы квадратного уравнения.
Решение
У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.
Ответ
и
Задание
Найдите, если это возможно, сумму и произведение корней уравнения:
Решение
. Так как дискриминант меньше нуля, значит у уравнения нет корней.
Ответ
Нет корней.
Задание
Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:
Решение
По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.
Сумма корней нового уравнения будет равна:
, а произведение
.
По теореме, обратной теореме Виета, новое уравнение имеет вид:
Ответ
Получилось уравнение, каждый корень которого в два раза больше:
Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член
– число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.
А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.
Полезные источники:
- Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
- Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
- Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300