Авторизуйтесь, чтобы отобразить ваше имя в таблице с результатами
Результаты авторизованых пользователей
Название теста Дата Результат Пользователь
Информатика / Тест с ответами: “Геоинформационные системы” 06-29-2022 01:09:21 am 11/20 Sevinch Rizametova
Русский язык / Тест с ответами на тему: «Спряжение глаголов» 06-28-2022 11:38:35 pm 9/14 Mehriban Aliyeva
Русский язык / Тест с ответами: “Повторение изученного по русскому языку” 6 класс 06-28-2022 11:32:25 pm 15/20 Mehriban Aliyeva
Русский язык / Тест с ответами на тему: “Наклонение глаголов” 06-28-2022 11:27:03 pm 6/12 Mehriban Aliyeva
Русский язык / Тест с ответами: “Времена глаголов” 06-28-2022 11:23:39 pm 9/14 Mehriban Aliyeva

#1. Станок-автомат производит изделия трех сортов. Первого сорта – 80%, второго – 15%. Определите вероятность того, что наудачу взятое изделие будет или второго, или третьего сорта

#2. Вероятность того, что дом может сгореть в течение года, равна 0.01. Застраховано 500 домов. Определите асимптотическое приближение, чтобы сосчитать вероятность того, что сгорит не более 5 домов

#3. Два стрелка стреляют по разу в общую цель. Вероятность попадания в цель у одного стрелка 0.6, у другого – 0.7. Найти вероятность того, что цель будет поражена двумя пулями

#4. Раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними

#5. Два стрелка стреляют по мишени. Вероятность попадания в цель у одного стрелка 0.7, у другого – 0.8. Найти вероятность того, что цель будет поражена

#6. Рабочий обслуживает три станка. Вероятность того, что в течение часа станок потребует внимания рабочего, равна для первого станка 0.1, для второго – 0.2 и для третьего – 0.15. Найти вероятность того, что в течение некоторого часа хотя бы один из станков потребует внимания рабочего

#7. Бросается 5 монет. Найдите вероятность того, что три раза выпадет герб

#8. События A и B называются несовместными, если

#9. Выпущено 100 лотерейных билетов, причем установлены призы, из которых 8 по 1 руб., 2 – по 5 руб. и 1 – 10 руб. Найдите вероятности p0 (билет не выиграл), p1 (билет выиграл 1 руб.), p5 (билет выиграл 5 руб.) и p10 (билет выиграл 10 руб.) событий

#10. Возникновение теории вероятностей как науки относят к

#11. Стрелок попадает в цель в среднем в 8 случаях из 10. Найдите вероятность, что, сделав три выстрела, он два раза попадет

#12. Самые ранние работы учёных в области теории вероятностей относятся к

#13. Теннисист идет на игру. Если ему дорогу перебежит черная кошка, то вероятность победы 0,2; если не перебежит, то – 0,7. Вероятность, что кошка перебежит дорогу – 0,1; что не перебежит – 0,9. Вероятность победы

#14. Изделия изготавливаются независимо друг от друга. В среднем одно изделие из ста оказывается бракованным. Найдите вероятность того, что из двух взятых наугад изделий окажутся неисправными оба

#15. Если имеется группа из n несовместных событий Hi, в сумме составляющих все пространство, и известны вероятности P(Hi), а событие A может наступить после реализации одного из Hi и известны вероятности P(A/Hi), то P( вычисляется по формуле)

#16. Изделия изготавливаются независимо друг от друга. В среднем одно изделие из ста оказывается бракованным. Найдите вероятность того, что из 200 взятых наугад изделий 2 окажутся неисправными

#17. В пирамиде 5 винтовок, 3 из которых снабжены оптическим прицелом. Вероятность попадания для стрелка при выстреле из винтовки с оптическим прицелом равна 0.95, из обычной винтовки – 0.7. Стрелок наудачу берет винтовку и стреляет. Найти вероятность того, что мишень будет поражена

#18. Студенту предлагают 6 вопросов и на каждый вопрос 4 ответа, из которых один верный, и просят дать верные ответы. Студент не подготовился и выбирает ответы наугад. Найдите вероятность того, что он правильно ответит ровно на половину вопросов (С точностью до 3-х знаков после запятой)

#19. Производится n независимых испытаний, в которых вероятность наступления события A равна p. n велико. Вероятность того, что событие A наступит m раз, вычисляется по формуле или используются асимптотические приближения

#20. Для проверки на всхожесть было посеяно 2000 семян, из которых 1700 проросло. Определите вероятность p прорастания отдельного семени в этой партии и количество семян в среднем (назовем это число M), которое взойдет из каждой тысячи посеянных

Показать результаты

Ваши результаты