О чем статья
Основная задача формул сокращённого умножения
Формулы сокращённого умножения (ФСУ) нужны для того, чтобы умножать и возводить в степень числа, выражения, в том числе многочлены. То есть, при помощи формул можно работать с числами значительно быстрее и проще. Таким образом можно из сложного уравнения сделать обычное, что упростит задачу.
Нужна помощь в написании работы?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Таблица с формулами сокращённого умножения
Название | Формула | Как читается |
---|---|---|
Квадрат суммы | Квадрат первого выражения плюс удвоенного произведение первого и второго выражения, плюс квадрат второго выражения. | |
Квадрат разности | |
Квадрат разности двух выражений равен квадрату первого выражения, минус удвоенное произведение первого выражения на второе, плюс квадрат второго выражения. |
Куб суммы | Куб разности двух выражений равен кубу первого выражения плюс утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, плюс второе выражение в кубе. | |
Куб разности | Куб разности двух величин равен первое выражение в кубе минус утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, минус второе выражение в кубе. | |
Разность квадратов | Разность квадратов первого и второго выражений равен произведению разности двух выражений и их суммы. | |
Сумма кубов | Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов. | |
Разность кубов
|
Произведение разности двух выражений на неполный квадрат суммы равно разности их кубов. |
Формулы сокращенного умножения (скачать таблицу для печати)
Обратите внимание на первые четыре формулы. Благодаря им можно возводить в квадрат или куб суммы (разности) двух выражений. Что касается пятой формулы, её нужно применять, чтобы вкратце умножить разность или сумму двух выражений.
Две последние формулы (6 и 7) применяются, чтобы умножать суммы обоих выражений на их неполный квадрат разности или суммы.
Вышеперечисленные формулы довольно-таки часто нужны на практике. Именно поэтому их желательно знать наизусть.
Если вам попался пример, разложить многочлен на множители, тогда во многих случаях нужно левую и правую часть переставить местами.
Например, возмём ту же первую формулу:
и левую часть поставим вправо, а правую влево:
Такую же процедуру можно проделывать и с остальными формулами.
Доказательство ФСУ
Остановимся на доказательствах формул сокращённого умножения. Это не сложно. Нужно всего лишь раскрыть скобки. Рассмотрим на первой формуле – квадрат суммы: .
Шаг первый.
Возведём a + b во вторую степень. Для этого степень трогать не будем, а выполним банальное умножение: =
x
.
Шаг второй. Теперь и
выносим за скобки:
x
+
x
.
Шаг третий. Раскрываем скобки: x
+
x
+
x
+
x
.
Шаг четвёртый. Умножаем, не забывая о знаках: x
+
x
+
.
Шаг пятый. Упрощаем выражение: .
Точно так же можно доказать абсолютно любую формулу сокращённого умножения.
Примеры и решения с помощью ФСУ
Как правило, эти семь формул применяются тогда, когда нужно упростить выражение, чтобы решить какое-либо уравнение и даже обычный пример.
Задание
Упростите выражение:
Как видно, к этому примеру подходит первая формула сокращённого умножения – Квадрат суммы.
Решение
Исходя из первой формулы надо пример разложить на множители. Для этого смотрим на формулу и вместо букв подставляем цифры. В нашем случае «а» – это 3x, а «b» – это 5:
x
x
+
Считаем правую часть и записываем результат. У нас получается:
+
x
x
+
В примере надо умножить всё то, что умножается и сразу получаем ответ:
Конечно же, есть примеры и с дробями. Но, если научитесь решать простые примеры, тогда другие виды вам будут не страшны.
Задание
Упростите выражение
Решение
=
–
x
x
+
=
Задание
Представьте в виде квадрата двучлена трёхчлен
Решение
Здесь квадраты выражений – и
Выражения, которые возводились в квадрат – и
Удвоенное произведение этих выражений – , который совпадает с со вторым членом трёхчлена (со знаком «плюс), значит,
Итак, как видно, ничего сложно в примерах нет. Главное, знать формулы, где их можно применять, а где можно обойтись и без них.
Полезные источники
- Арефьева И. Г., Пирютко О. Н. Алгебра: учебник пособие для 7 класса учреждений общего среднего образования: Минск “Народная Асвета”, 2017 – 304 с.
- Никольский С. М., Потапов М. К. Алгебра 7 класс: М: 2015 – 287 с.
- Рубин А. Г., Чулков П. В. Алгебра. 7 класс. М: 2015 – 224 с.