Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды равен
D=0E. (1)
Используя формулы = 1+ и P = 0E, вектор электрического смещения можно выразить как
D=0Е+Р (2)
Единица электрического смещения — Кулон на метр в квадрате (Кл/м2).
Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.
Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности.
Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.
Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность
(3)
Теорема Гаусса для электростатического поля в диэлектрике:
(4)
т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.
Выведем дифференциальную форму теоремы Гаусса для электростатического поля в диэлектрике. Применим (4) к малой поверхности S, ограничивающей малый объем V и содержащей заряд Q. Разделим обе части на V и перейдем к пределу при стремлении V к нулю:
(5)
Предел, стоящий в левой части выражения (5), определяет величину, называемую дивергенцией поля. Тогда выражение (5) можно записать
div D = , (6)
где – объемная плотность свободного заряда.
Практический аспект теоремы Гаусса состоит в том, что с ее помощью рассчитываются симметричные электрические поля в неоднородных средах.