О чем статья
Параметрическое и каноническое уравнение прямой в пространстве
Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой , которая проходит через данную точку параллельно направляющему вектору .
[stextbox id=»info» defcaption=»true»]
Пусть, — произвольная точка прямой, тогда векторы и коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:
(1)
это и есть канонические уравнения прямой.
[/stextbox]
Приравнивая каждую из дробей (1) к параметру , запишем параметрические уравнения прямой:
(2)
Уравнение прямой в пространстве, которая проходит через две заданные точки
Уравнение прямой в пространстве — тема очень лёгкая, так как здесь самое важное — знать нужную формулу. Тогда легко можно решить любую задачу.
Итак, через две точки и можно не только геометрично провести линию, но и сложить её уравнения.
[stextbox id=»info» defcaption=»true»]
За направляющий вектор возьмём , тогда по формуле (1) у нас получается:
(3)
уравнение прямой в пространстве, которые проходят через две заданные точки.
[/stextbox]
Нужна помощь в написании работы?
Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Общее уравнение прямой — переход к каноническому уравнению
Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.
[stextbox id=»info» defcaption=»true»]
Пусть известны их уравнения:
(4)
Тогда система (4) называется общим уравнением прямой.
[/stextbox]
Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор и точку этой прямой.
Точку находим, как один из решений системы (4). Например, положив в (4) находим , тогда и точку . Направляющий вектор , который параллелен к каждой из плоскостей и и перпендикулярен к их нормальным векторам и , то есть , . (см. рис. 1). Поэтому вектор можно найти при помощи векторного произведения и
= x =
Найдены координаты и подставим в каноническое уравнение (1).
Например, от общих уравнений прямой:
Перейдём к каноническим, положив в системе (при нём относительно больше коэффициенты). найдём . Нормальные векторы и . Тогда направляющий вектор
Рис. 1
x = ,
и канонические уравнения станут:
Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых
Угол между двумя прямыми :
и
равен углу между их направляющими векторами и , поэтому
=
(5)
Условия параллельности и перпендикулярности прямых соответственно запишутся:
и .
(6)
Примеры решения задач
Давайте рассмотрим первый пример, где можно двумя способами построить прямую:
[stextbox id=»warning» caption=»Пример 1″]
Задача
При точке и направляющем векторе необходимо:
- составить каноническое уравнение прямой;
- построить эту прямую.
Решение
1) По формуле (1) запишем каноническое уравнение прямой :
= .
2) Рассмотрим два способа построения прямой .
Первый способ
В системе координат строим вектор и точку и проводим через точку прямую параллельную вектору .
Второй способ
По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:
На рисунке видно, что при произвольных значениях из системы находим координаты соответствующих точек, которые принадлежат прямой . Так при находим координаты . Через две точки и проводим прямую .
[/stextbox]
Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:
[stextbox id=»warning» caption=»Пример 2″]
Задача
Найти острый угол между прямыми:
,
(7)
Решение
По формуле (7) получаем:
= = =
Так как , тогда угол тупой, , а острый угол .
Ответ
.
[/stextbox]
Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.
[stextbox id=»warning» caption=»Пример 3″]
Задача
Составить уравнение прямой , которая проходит через точку и параллельна прямой .
Решение
От параметрического уравнения переходим к каноническому При условии параллельности прямых то есть направляющим вектором новой прямой может служить известный вектор и по формуле (1) у нас получается:
.
Ответ
.
[/stextbox]