О чем статья
Что такое эллипс и фокусное расстояние
Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна .
Обозначим фокусы эллипса и . Допустим, что расстояние = – фокусное расстояние.
Рис. 1
– фокусы .
; ,
– половина расстояния между фокусами;
– большая полуось;
– малая полуось.
Теорема:
Фокусное расстояние и полуоси связаны соотношением:
Если точка находится на пересечении эллипса с вертикальной осью, (теорема Пифагора). Если же точка находится на пересечении его с горизонтальной осью, . Так как по определению сумма – постоянная величина, то приравнивая получается:
.
Уравнение эллипса
Уравнение элиппса бывает двух видов:
- Каноническое уравнение эллипса.
- Параметрическое уравнение эллипса.
Сначала рассмотрим каноническое уравнение эллипса:
Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:
Если центр эллипсa смещен в точку с координатами тогда уравнение:
Чтобы получить каноническое уравнение эллипса, разместим и на оси симметричной к началу координат. Тогда у фокусов будут такие координаты и (см. рис. 2).
Пусть – произвольная точка эллипса. Обозначим через и – расстояние от точки к фокусам. Согласно с определением эллипса:
(1)
Рис. 2
Подставим в (1) , и освободимся от иррациональности, подняв обе части к квадрату, получим:
(подносим к квадрату обе части): ,
Обозначим: , получаем каноническое уравнение эллипса:
(2)
Отметим, что по известному свойству треугольника (сумма двух сторон больше третьей) из у нас получается . Так как , тогда , и поэтому .
Для построения эллипса обратим внимание, что если точка принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки тоже удовлетворяют это уравнение: из
.
Точки – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.
Из уравнения (2) находим , для первой четверти .
Если , тогда . Если же , тогда . Точки и , а также симметричные с ними , – вершины эллипса, точка – центр эллипса, = большая ось, – малая ось эллипса.
Если первой четверти, тогда из получается, что при возрастании от к значение падает от к . (рис. 3)
Параметрическое уравнение выглядит так:
Основные свойства эллипса
Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.
1. Угол между касательной к эллипсу и фокальным радиусом равен углу между касательной и фокальным радиусом .
2. Уравнение касательной к эллипсу в точке с координатами :
.
3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).
4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.
5. Если вписать эллипс с фокусами и у треугольника , тогда выполняется соотношение:
=
Эксцентриситет эллипса
[stextbox id=”info” defcaption=”true”]Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на обозначается [/stextbox]
Значения эксентриситета характеризует степень “сплющенность” эллипса. Если , тогда – получается круг. Если же , тогда – эллипс превращается в отрезок. В некоторых случаях . Для фокальных радиусов приведём без доказательства такие формулы:
Рис. 3
Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси и , тогда вычислим – полуфокусное расстояние.
Строим фокусы и на расстоянии один от другого Концы не растянутой нити длиной закрепляем в точках и . Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.
Примеры решения задач
[stextbox id=”warning” caption=”Пример 1″]
Задача
Задан эллипс уравнением и точки . Необходимо:
- убедиться, что точки и лежат на эллипсе;
- найти полуоси эллипса и координаты его фокусов;
- найти расстояние от точки к фокусам;
- убедиться, что сумма этих расстояний равна длине большой оси;
- найти эксентриситет эллипса.
Решение
1. Подставим координаты точки в левую часть уравнения эллипса:
– точка лежит на эллипсе. Аналогично для :
точка лежит на эллипсе.
2. С канонического и данного уравнения эллипса выходит: Из равенства получается:
– полуфокусное расстояние. Координаты фокусов и .
3. Найдём фокальные радиусы точки :
4. Найдём сумму , что отвечает определению эллипса.
5. Эксцентриситет находится по формуле .
[/stextbox]
[stextbox id=”warning” caption=”Пример 2″]
Задача
Найти оси, вершины и фокусы эллипса
Решение
Сведём обычное уравнение к каноническому:
, . Вершины эллипса в точках , , , . Строим вершины на координатных осях и соединяем плавной линией (см. рис. 2). Так как в данном случае больше, чем , то эллипс, который вытянут вдоль оси , находим полуфокусное расстояние .
Фокусы в точках и . (см. рис. 3)
Рис. 4
[/stextbox]
[stextbox id=”warning” caption=”Пример 3″]
Найти оси, вершины и фокусы эллипса или . Построить эллипс.
Сравнивая последнее уравнение с уравнением (2), у нас получается:
, . Откуда находим оси эллипса: , и координаты вершин: , , , . Дальше из формулы:
. Значит, фокусами эллипса есть точки: и . Для построения эллипса отложим на осях и вершины соответственно соединим их плавной линией, (см. задачу 1).
Замечание! Если в каноническом уравнении большей полуосью будет , тогда фокусы эллипса будут расположены на оси и тогда .
[/stextbox]