О чем статья
Уравнение прямой проходящей через точку и нормальный вектор
Рассмотрим уравнение прямой проходящей через точку и нормальный вектор. Пусть в системе координат задана точка и ненулевой вектор (рис. 1). [stextbox id=”info” defcaption=”true”]Как видим, существует единственная прямая , что проходит через точку перпендикулярно направлению вектора (в этом случае называют нормальным вектором прямой ).[/stextbox]
Рис. 1
Докажем, что линейное уравнение
+
(1)
это уравнение прямой , то есть координаты каждой точки прямой удовлетворяют уравнение (1), но координаты точки, что не лежит на , уравнения (1) не удовлетворяют.
Для доказательства, обратим внимание, что скалярное произведение векторов и = в координатной форме совпадает с левой частью уравнения (1).
x = .
(2)
Дальше используем очевидное свойство прямой : векторы и перпендикулярны тогда, и только тогда, когда точка лежит на . А при условии перпендикулярности обоих векторов их скалярное произведение (2) превращается в для всех точек , что лежат на , и только для них. Значит, (1) – уравнение прямой .
[stextbox id=”info” defcaption=”true”]Уравнение (1) называется уравнением прямой, что проходит через данную точку с нормальным вектором = . [/stextbox]
Нужна помощь в написании работы?
Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.
Общее уравнение прямой
Превратим уравнение (1)
+ + – = .
Обозначив = , получим
.
(3)
– общее уравнение прямой.
Таким образом, прямой линии отвечает линейное уравнение вида (3). Наоборот, за данным уравнением вида (3), где хотя бы один из коэффициентов и не равен нулю, можно построить прямую.
Действительно, пусть пара чисел удовлетворяют уравнение (3), то есть
.
Отнимая последнее от (3), получим соотношение , которое определяет прямую за вектором и точкой .
Исследование общего уравнения прямой
Полезно знать особенности размещения прямой в отдельных случаях, когда одно либо два из чисел равны нулю.
1. Общее уравнение выглядит так: . Ему удовлетворяет точка , значит, прямая проходит через начало координат. Его можно записать: = – x (см. рис. 2).
Рис. 2
Считаем, что:
–>.
Если положить , тогда , получается ещё одна точка (см. рис. 2).
2. , тогда уравнение выглядит так , где = –. Нормальный вектор лежит на оси , прямая . Таким образом, прямая перпендикулярна в точке , либо же параллельна оси (см. рис. 3). В частности, если и , тогда и уравнение – это уравнение оси ординат.
Рис. 3
3. Аналогично, при уравнение записывается , где . Вектор принадлежит оси . Прямая в точке (рис. 4) .
Рис. 4
Если же , тогда уравнение оси .
Исследование можно сформулировать в такой форме: прямая параллельна той координатной оси, смена которой в общем уравнении прямой отсутствует.
Например:
1. прямая , слагаемое с отсутствует, поэтому .
2. прямая .
Уравнение прямой в отрезках
Построим прямую по общему уравнению при условии, что – не равны нулю. Для этого достаточно найти две точки, что лежат на этой прямой. Такие точки иногда удобнее находить на координатных осях.
Положим , тогда = –.
При , тогда = –.
Обозначим – = , – = . Найдены точки и . Отложим на осях и и через них проведём прямую (см. рис. 5).
Рис. 5
От общего можно перейти к уравнению, в которое будут входить числа и :
И тогда получается:
Либо, согласно обозначению, получим уравнение,
+ =
(4)
Которое называется уравнением прямой в отрезках. Числа и с точностью к знаку равняются отрезкам, которые отсекаются прямой на координатных осях.
Уравнение прямой с угловым коэффициентом
Чтобы узнать, что такое уравнение прямой с угловым коэффициентом, рассмотрим уравнение (1):
+ = – x
Обозначив – = , получим
=
(5)
уравнение прямой, которая проходит через точку в заданном направлении. Геометрическое содержание коэффициента понятно из рис. 6.
В = = , где – наименьший угол, на который нужно повернуть положительное направление оси вокруг общей точки до совмещения её с прямой . Очевидно, что если угол – острый, тогда ; если же – тупой угол, тогда .
Раскроем скобки в (5) и упростим его:
=
(6)
где . Соотношение (6) – уравнение прямой с угловым коэффициентом. При , – отрезок, который отсекает прямую на оси (см. рис. 6).
[stextbox id=”danger” defcaption=”true”] Для перехода от общего уравнения прямой к уравнению с угловым коэффициентом необходимо сначала решить относительно .[/stextbox]
Рис. 6
= – x + – =
где обозначено = –, = –. Если же , тогда из исследования общего уравнения уже известно, что такая прямая перпендикулярна оси .
Каноническое уравнение прямой
Рассмотрим каноническое уравнение прямой при помощи примера.
Пусть в системе координат задана точка и ненулевой вектор (рис. 7).
Рис. 7
Необходимо составить уравнение прямой, что проходит через точку параллельно вектору , который называется направляющим вектором. Произвольная точка принадлежит этой прямой тогда и только тогда, когда . Так как вектор – задан, а вектор , тогда согласно условию параллельности, координаты этих векторов пропорциональны, то есть:
= .
(7)
[stextbox id=”info” defcaption=”true”]Соотношение (7) называется уравнением прямой, которая проходит через заданную точку в заданном направлении или каноническом уравнением прямой.[/stextbox]
Обратим внимание, что к уравнению вида (7) можно перейти, например, от уравнения пучка прямых (4)
= ,
или от уравнения прямой через точку и нормальный вектор (1):
=
Выше предполагалось, что направляющий вектор – ненулевой, но может так случиться, что одна из его координат, например, . Тогда выражение (7) формально запишется:
= ,
который, вообще не имеет смысла. Однако, принимают и получают уравнение прямой перпендикулярной оси . Действительно, из уравнения видно, что прямая определена точкой и направляющим вектором , перпендикулярным оси . Если в этом уравнении освободиться от знаменателя, тогда получим:
. , либо – уравнение прямой, перпендикулярной оси . Аналогично было бы получено для вектора .
Параметрическое уравнение прямой
Чтобы понять, что такое параметрическое уравнение прямой, необходимо вернуться к уравнению (7) и приравнять каждую дробь (7) до параметра . Так как хотя бы один из знаменателей в (7) не равен нулю, а соответствующий числитель может приобретать произвольные значения, тогда область смены параметра – вся числовая ось.
Получим:
= , =
или
(8)
[stextbox id=”info” defcaption=”true”]Уравнение (8) называется параметрическим уравнением прямой.[/stextbox]
Примеры задач на прямую линию
Конечно же, сложно что-либо решить исключительно по определениям, ведь нужно решить самостоятельно хотя бы несколько примеров или задач, которые помогут закрепить пройденный материал. Поэтому, давайте разберём основные задачи на прямую линию, так как похожие задачи часто попадаются на экзаменах и зачётах.
Каноническое и параметрическое уравнение
[stextbox id=”warning” caption=”Пример 1″]На прямой линии заданной уравнением , найти точку , которые находятся от точки этой прямой на расстоянии 10 единиц.
Решение:
Пусть искомая точка прямой, тогда для расстояния запишем . При условии . Так как точка принадлежит прямой , у которой есть нормальный вектор , тогда уравнение прямой можно записать: = = и далее получается:
Тогда расстояние . При условии , или . Из параметрического уравнения:
Ответ: .
[/stextbox]
[stextbox id=”warning” caption=”Пример 2″]
Задача
Точка движется равномерно со скоростью по направлению вектора от начальной точки . Найти координаты точки через от начала движения.
Решение
Сначала нужно найти единичный вектор . Его координаты – это направляющие косинусы:
= = ; = =
Тогда вектор скорости:
= x = x = .
Каноническое уравнение прямой теперь запишется:
= = , = – параметрическое уравнение. После этого нужно воспользоваться параметрическим уравнением прямой при .
Ответ
.
[/stextbox]
Угол между двумя прямыми
[stextbox id=”warning” caption=”Пример”]
В равнобедренном прямоугольном треугольнике известна вершина прямого угла и уравнение гипотенузы . Составить уравнение катетов.
Решение:
Уравнение прямой, которая проходит через точку находим по формуле пучка прямых , где угловой коэффициент для прямой и = для прямой .
При условии , , поэтому и находим по формуле :
=
(9)
Учитывая рисунок, где видно, что между прямыми и – два угла: один острый , а второй – тупой . Согласно формуле (9) – это тот угол между прямыми и , на который нужно повернуть прямую против часовой стрелки относительно их точки пересечения до совмещения её с прямой .
Итак, формулу вспомнили, с углами разобрались и теперь можно вернуться к нашему примеру. Значит, учитывая формулу (9) находим сначала и уравнения катета .
Так как поворот прямой на угол против часовой стрелки относительно точки приводит к совмещению с прямой , тогда в формуле (9) , а . Из уравнения :
, поэтому
= Далее следует:
= = = = .
По формуле пучка уравнения прямой запишется:
= .
Аналогично находим , а ,
= Далее:
= = .
Уравнение прямой :
= .
Ответ: , .
[/stextbox]