Алгоритм решения интегралов
Неопределённым интегралом функции называется множество всех первообразных этой функции. Первообразной функции называется такая функция, производная которой равна исходной функции, т.е., если Операция интегрирования является операцией обратной операции дифференцирования. Определённым интегралом функции на отрезке – первообразная функции
, то:
называется разность первообразных функции, вычисленных на концах этого отрезка.
Определённый интеграл вычисляется при помощи формулы Ньютона-Лейбница:
Для нахождения интегралов функций, используются свойства интегралов, а также таблица интегралов.
Таблица основных интегралов, – постоянная величина
Примеры решений интегралов
Задача
Вычислить интеграл:
Решение
По таблице интегралов находим:
Ответ
Задача
Вычислить интеграл:
Решение
По таблице интегралов находим:
Ответ
Задача
Вычислить интеграл:
Решение
По таблице интегралов находим:
Ответ
Задача
Вычислить интеграл:
Решение
Вынося постоянный множитель 7 за знак интеграла, по таблице интегралов находим:
Ответ
Задача
Вычислить интеграл:
Решение
Интеграл суммы равен сумме интегралов, поэтому:
Ответ
Задача
Вычислить интеграл:
Решение
Интеграл суммы равен сумме интегралов, поэтому:
Ответ
Задача
Вычислить интеграл:
Решение
Преобразуя подынтегральную функцию к виду степенной, находим её интеграл по таблице интегралов:
Ответ
Задача
Вычислить интеграл:
Решение
Преобразуя подынтегральную функцию к виду степенной, находим её интеграл по таблице интегралов:
Ответ
Задача
Вычислить интеграл:
Решение
Интеграл суммы равен сумме интегралов, поэтому:
Далее найдём каждый интеграл суммы:
Ответ
Задача
Вычислить интеграл:
Решение
Интеграл суммы равен сумме интегралов, поэтому:
Далее, применяя таблицу интегралов, находим интегралы функций синус и косинус:
Ответ