Прямая в пространстве. Взаимное расположение двух прямых, прямой и плоскости в пространстве

Линейная алгебра 22.11.2019 0 3209 Нашли ошибку? Ссылка по ГОСТ

Уравнение прямой в пространстве по точке и направляющему вектору. Возьмем произвольную прямую и вектор (m, n, p), параллельный данной прямой. Вектор называется направляющим вектором прямой. На прямой возьмем две произвольные точки М0(x0, y0, z0) и M(x, y, z).

Обозначим радиус- векторы этих точек как и , очевидно, что

= .

Т.к. векторы и коллинеарны, то верно соотношение = t, где t – некоторый параметр.

Итого, можно записать: = + t.

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

Это векторное уравнение может быть представлено в координатной форме:

Преобразовав эту систему и приравняв значения параметра t, получаем канонические уравнения прямой в пространстве: .

Уравнение прямой в пространстве, проходящей через две точки:

Общие уравнения прямой в пространстве.

Угол между прямыми в пространстве.

Пусть в пространстве заданы две прямые. Их параметрические уравнения:

l1:

l2: ;

Угол между прямыми  и угол между направляющими векторами  этих прямых связаны соотношением:  = 1 или  = 1800 — 1. Угол между направляющими векторами находится из скалярного произведения. Таким образом:

.

Условия параллельности и перпендикулярности прямых в пространстве.

Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны.

. Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т.е. косинус угла между ними равен нулю.

Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость. Пусть плоскость задана уравнением , а прямая — . Угол может быть найден по формуле, искомый угол  = 900 — , где  — угол между векторами и :

; В координатной форме:

Нашли ошибку? Выделите текст и нажмите CTRL + Enter

Средняя оценка 0 / 5. Количество оценок: 0

Поставьте вашу оценку

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше?

3209