1) , где — угол между векторами и ,
2) вектор ортогонален векторам и
3) , и образуют правую тройку векторов.
Обозначается: или.
Свойства векторного произведения векторов:
1) ;
2) , если или = 0 или = 0;
3) (m)= (m) = m();
4) (+ ) = + ;
5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то
=
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .
Пример. Найти векторное произведение векторов и .
= (2, 5, 1); = (1, 2, -3)
.
Нашли ошибку? Выделите текст и нажмите CTRL + Enter